H. Fujimoto Nagoya Math. J. Vol. 83 (1981), 153-181

REMARKS TO THE UNIQUENESS PROBLEM OF MEROMORPHIC MAPS INTO $P^{N}(C)$, IV

HIROTAKA FUJIMOTO

§1. Introduction

Let H_1, H_2, \dots, H_{N+2} be hyperplanes in $P^N(C)$ located in general position and $\nu_1, \nu_2, \dots, \nu_{N+2}$ divisors on C^n . We consider the set $\mathscr{F}(H_i, \nu_i)$ of all non-degenerate meromorphic maps of C^n into $P^N(C)$ such that the pullbacks $\nu(f, H_i)$ of the divisors (H_i) on $P^N(C)$ by f are equal to ν_i for any $i = 1, 2, \dots, N+2$. In the previous paper [6], the author showed that \mathscr{F} $:= \mathscr{F}(H_i, \nu_i)$ cannot contain more than N+1 algebraically independent maps. Relating to this, the following theorem will be proved.

THEOREM. The set \mathcal{F} is finite.

We give here an example which shows that the number $\#\mathscr{F}$ of elements in \mathscr{F} is not less than (N+1)!. Take N+1 nowhere zero entire functions h_1, \dots, h_{N+1} such that $h_i/h_j \neq \text{const}$ if $i \neq j$, and define

$$F:=h_1+h_2+\cdots+h_{N+1}$$
.

We consider hyperplanes

(1)
$$H_i : w_i = 0 \quad (1 \leq i \leq N+1) \\ H_{N+2} : w_1 + w_2 + \cdots + w_{N+1} = 0$$

in $P^{N}(C)$ and divisors

$$egin{aligned}
u_i &= 0 & (1 \leq i \leq N+1) \
u_{N+2} &:=
u_F \end{aligned}$$

on C^n , where $w_1: w_2: \cdots: w_{N+1}$ are homogeneous coordinates on $P^N(C)$ and ν_F denotes the divisor defined by the zero-multiplicity of F. Then, $\mathscr{F}:=\mathscr{F}(H_i,\nu_i)$ contains

$$f^{\sigma} = h_{\sigma(1)} \colon h_{\sigma(2)} \colon \cdots \colon h_{\sigma(N+1)}$$

Received September 14, 1979.