M. Itô and N. Suzuki Nagoya Math. J. Vol. 83 (1981), 53-106

COMPLETELY SUPERHARMONIC MEASURES FOR THE INFINITESIMAL GENERATOR A OF A DIFFUSION SEMI-GROUP AND POSITIVE EIGEN ELEMENTS OF A

MASAYUKI ITÔ AND NORIAKI SUZUKI

§1. Introduction

Let X be a locally compact Hausdorff space with countable basis. We denote by

M(X) the topological vector space of all real Radon measures in X with the vague topology,

 $M_{\kappa}(X)$ the topological vector space of all real Radon measures in X whose supports are compact with the usual inductive limit topology.

Their subsets of all non-negative Radon measures are denoted by $M^+(X)$ and by $M^+_{\mathcal{K}}(X)$, respectively.

In the paragraph 2, we shall prepare the terminology and the notation which we shall use in the sequel.

A continuous linear operator T from $M_{\kappa}(X)$ into M(X) is called a diffusion kernel on X if T is positive, i.e., $T\mu \in M^+(X)$ whenever $\mu \in M^+_{\kappa}(X)$. A semi-group $(T_i)_{i\geq 0}$ of diffusion kernels on X is called a diffusion semigroup if $T_0 = I$ (the identity) and if, for any $\mu \in M_{\kappa}(X)$, the mapping $t \to T_{\iota}\mu$ is continuous in M(X).

We consider the infinitesimal generator A of a transient and regular diffusion semi-group $(T_t)_{t\geq 0}$ on X. A Radon measure $\mu \in M(X)$ is said to be A-superharmonic (resp. A-harmonic) if it satisfies $-A\mu \in M^+(X)$ (resp. $A\mu = 0$).

In the paragraph 3, we shall show that every positive A-superharmonic Radon measure is written uniquely as the sum of a V-potential of a nonnegative Radon measure and a non-negative A-harmonic measure, where V is the Hunt diffusion kernel for $(T_t)_{t\geq 0}$, i.e.,

Received April 27, 1979.