M. Kurata Nagoya Math. J. Vol. 74 (1979), 77-86

HYPERBOLIC NONWANDERING SETS WITHOUT DENSE PERIODIC POINTS

MASAHIRO KURATA

In this paper we give a negative answer to the problem which is suggested in [3]: if a nonwandering set Ω is hyperbolic, are the periodic points dense in Ω ?

Newhouse and Palis proved that on two dimensional closed manifolds the answer is positive ([1], [2]).

Suppose that $f: M \to M$ is a diffeomorphism of a manifold M. A point $x \in M$ is a nonwandering point of f if for any neighbourhood $U \subset M$ of x there is a positive integer n such that $f^n(U) \cap U \neq \emptyset$. $\Omega = \{$ nonwandering points of $f \}$ is called the nonwandering set of f. A point of $M - \Omega$ is a wandering point. A nonwandering set Ω of f is hyperbolic if Ω is compact and $TM|\Omega$ splits into a Whitney sum of Tf-invariant subbundles

$$TM|\Omega = E^s \oplus E^u$$
,

and there are $c > 0, 0 < \lambda < 1$ such that

$$\|Tf^nv\| \leq c\lambda^n \|v\|$$
 if $v \in E^s$

and

$$\|Tf^{-n}v\| \leq c\lambda^n \|v\|$$
 if $v \in E^u$

for n > 0.

We will prove the following.

THEOREM. Suppose that M is a manifold with dim $M \ge 4$. Then there is a diffeomorphism $F: M \to M$ such that the nonwandering set Ω is hyperbolic but periodic points of F are not dense in Ω .

Proof. 0. An outline of Proof. To simplify the proof, we assume dim M = 4. In 1 we construct an embedding of 2-dimensional disk f: D

Received February 20, 1978.