ON SUBCLASSES OF INFINITELY DIVISIBLE DISTRIBUTIONS ON *R* RELATED TO HITTING TIME DISTRIBUTIONS OF 1-DIMENSIONAL GENERALIZED DIFFUSION PROCESSES

MAKOTO YAMAZATO

1. Introduction

A distribution μ on $\mathbf{R}_+ = [0, \infty)$ is said to be a CME_+^ℓ distribution if there are an increasing (in the strict sense) sequence of positive real numbers $\{a_k\}_{k=1}^\ell$ and $0 = b_0 < b_1 < \cdots < b_m < b_{m+1} = \infty \ (0 \le m < \ell < \infty)$ such that, for each $j = 0, \ldots, m$, there is at least one a_k satisfying $b_j < a_k < b_{j+1}$ and the

Laplace transform
$$\mathcal{L}\mu(s)=\int_{\mathbf{R}_+}e^{-sx}\mu(dx)$$
 of μ is represented as

$$\mathcal{L}\mu(s) = \prod_{i=1}^{\ell} a_i (s+a_i)^{-1} \qquad \text{if } m=0,$$

= $\prod_{i=1}^{\ell} a_i (s+a_i)^{-1} / \prod_{j=1}^{\ell} b_j (s+b_j)^{-1} \quad \text{if } m \ge 1.$

The author [8] shows that the upward first passage time distributions of birth and death processes belong to the class CME_+^f . He [9] also shows that the class of distributions of hitting times of single points of generalized diffusion processes is a proper subclass of the closure CME_+ , in the weak convergence sense, of CME_+^f . Let CME_-^f be the class of distributions on $\mathbf{R}_- = (-\infty, 0]$ whose mirror images belong to CME_+^f . That is, $\mu \in CME_-^f$ if and only if $\bar{\mu}(du) = \mu(-du)$ belongs to CME_+^f . Let CME_+^f be the class of $\mu = \mu_1 * \mu_2$ with $\mu_1 \in CME_+^f$ and $\mu_2 \in CME_-^f$. Sato [4] shows that the distributions of sojourn times of birth and death processes with weight not necessarily positive belong to CME_-^f .

We denote the class of infinitely divisible distributions on \mathbf{R} (or \mathbf{R}_{\pm}) by $\mathscr{I}(\mathbf{R})$ (or $\mathscr{I}(\mathbf{R}_{\pm})$). The classes CME_{\pm}^f and CME_{\pm} are contained in $\mathscr{I}(\mathbf{R}_{+})$. The class CME_{\pm}^f is contained in $\mathscr{I}(\mathbf{R})$. Some interesting classes of infinitely divisible distributions on \mathbf{R}_{\pm} (for example, BO, CE_{\pm} , ME_{\pm} , CME_{\pm} , . . .) are introduced in [1] and [8] and representations of their Laplace transforms, compactness

Received April 12, 1991.