J. Brüning and T. Sunada Nagoya Math. J. Vol. 126 (1992), 159-171

ON THE SPECTRUM OF PERIODIC ELLIPTIC OPERATORS

JOCHEN BRÜNING AND TOSHIKAZU SUNADA

§ 0. Introduction

It was observed in [Su5] that the spectrum of a *periodic* Schrödinger operator on a Riemannian manifold has *band structure* if the transformation group acting on the manifold satisfies the *Kadison property* (see below for the definition). Here band structure means that the spectrum is a union of mutually disjoint, possibly degenerate closed intervals, such that any compact subset of \mathbf{R} meets only finitely many. The purpose of this paper is to show, by a slightly different method, that this is also true for general periodic elliptic self-adjoint operators.

Let X be a Riemannian manifold of dimension n on which a discrete group Γ acts isometrically, effectively, and properly discontinuously. We assume that the quotient space $\Gamma \setminus X$ (which may have singularities) is compact. Let E be a Γ -equivariant hermitian vector bundle over X, and $D: C^{\infty}(E) \longrightarrow C^{\infty}(E)$ a formally self-adjoint elliptic operator which commutes with the Γ -action. For short, we call such a D a Γ -periodic operator. It is easy to show (see Section 1) that the symmetric operator D with the domain $C_0^{\infty}(E)$ is essentially self-adjoint, so that D has a unique self-adjoint extension in the Hilbert space $L^2(E)$ of square integrable section of E, which we denote also by D by a slight abuse of notation.

Let $C^*_{red}(\Gamma, \mathcal{H})$ denote the tensor product of the *reduced group* C^* -algebra of Γ with the algebra \mathcal{H} of compact operators on a separable Hilbert space of infinite dimension, and by $\operatorname{tr}_{\Gamma}$ the canonical trace on $C^*_{red}(\Gamma, \mathcal{H})$. We define the Kadison constant $C(\Gamma)$ by

 $C(\Gamma) = \inf \{ \operatorname{tr}_{\Gamma} P ; P \text{ is a non-zero projection in } C^*_{\operatorname{red}}(\Gamma, \mathcal{H}) \}.$

By definition, Γ is said to satisfy the Kadison property if $C(\Gamma) > 0$. It is a conjecture proposed by Kadison that, if Γ is torsion free, then $C(\Gamma) = 1$. A

Received April 23, 1991.