H. Omoto and Y. Kimura Nagoya Math. J. Vol. 125 (1991), 15-31

ON &-APPROXIMATE SINGULARITIES OF AUTONOMOUS SYSTEMS OF VORTEX TYPE

HIDEO OMOTO AND YOSHIFUMI KIMURA

§ 0. Introduction

Let us consider three vortex-filaments $z_j(t)$ with strength Γ_j (j=1,2,3) in the complex plane C. Then the system of motion equations is given by

(E)
$$\frac{dz_j}{dt} = \sqrt{-1} \sum_{\substack{k=1\\(k\neq j)}} \frac{\Gamma_k}{\bar{z}_j - \bar{z}_k} \quad (j = 1, 2, 3).$$

This system (E) is defined on $V = \mathbb{C}^3 - \mathcal{D}$, where $\mathcal{D} = \{(z_1, z_2, z_3) \in \mathbb{C}^3; z_j = z_k \}$ for $j \neq k$ is the super-diagonal set of \mathbb{C}^3 . Let Sol(E) be the space of all smooth solutions of (E) and let $\psi: V \to Sol(E)$ be a smooth map defined as follows: For any $\alpha = (\alpha_1, \alpha_2, \alpha_3) \in V$, $\psi(\alpha)$ is the solution with initial values α .

It is well-known (cf. [2], p. 260) that if three points α_j of $\alpha=(\alpha_1,\alpha_2,\alpha_3)$ make a regular triangle in \mathbb{C} , then $\psi(\alpha)$ becomes a rotational motion about these center of mass, which is called rigid-rotation. This solution $\psi(\alpha)$ has no singular points (cf. Definition 2.1). Now instead of α , let us take $\alpha(\varepsilon)=\alpha+\varepsilon\beta$ as initial values, where ε is a small parameter and $\beta\in\mathbb{C}^3$. Then using computers, we find that $\psi(\alpha(\varepsilon))$ has a singular point at a time $t=T_0(\varepsilon)$, and that $T_0(\varepsilon)$ seems to approach asymptotically to a $\log(1/\varepsilon)+b$ as $\varepsilon\to 0$, for constants α , b (see Figure). We may set the following problems:

- (A) Is it true that $T_0(\varepsilon) \sim a \log(1/\varepsilon) + b \ (\varepsilon \to 0)$?
- (B) If (A) is correct, explain how the above constants a and b are determined from the given differential equations (E).

It doesn't seem that such problems have been treated yet.

In this paper we generalize the motion equations (E) on C to autonomous systems of vortex type on \mathbb{C}^m defined in § 1. We can also consider

Received January 22, 1991.