THE GENERALIZED DIVISOR PROBLEM AND THE RIEMANN HYPOTHESIS

HIDEKI NAKAYA

Introduction

Let $d_{z}(n)$ be a multiplicative function defined by

$$
\zeta^{z}(s)=\sum_{n=1}^{\infty} \frac{d_{z}(n)}{n^{s}} \quad(\sigma>1)
$$

where $s=\sigma+i t, z$ is a complex number, and $\zeta(s)$ is the Riemann zeta function. Here $\zeta^{z}(s)=\exp (z \log \zeta(s))$ and let $\log \zeta(s)$ take real values for real $s>1$. We note that if z is a natural number $d_{z}(n)$ coincides with the divisor function appearing in the Dirichlet-Piltz divisor problem, and $d_{-1}(n)$ with the Möbious function.

The generalized divisor problem is concerned with finding an asymptotic formula for $\sum_{n \leq x} d_{z}(n)$, which was observed for real $z>0$ by A. Kienast [6] and K. Iseki [4] independently. A. Selberg [8] considered for all complex z, his result being

$$
\begin{equation*}
D_{z}(x) \equiv \sum_{n \leq x} d_{z}(n)=\frac{x(\log x)^{z-1}}{\Gamma(z)}+O\left(x(\log x)^{n_{z-2}}\right) \tag{1}
\end{equation*}
$$

uniformly for $|z| \leq A, x \geq 2$, where A is any fixed positive number.
Next, let $\pi_{k}(x)$ be the number of integers $\leq x$ which are products of k distinct primes. For $k=1, \pi_{k}(x)$ reduces to $\pi(x)$, the number of primes not exceeding x. C. F. Gauss stated empirically that $\pi_{2}(x) \sim x(\log \log x) / \log x$, and, by using the prime number theorem, E. Landau proved that $\pi_{k}(x) \sim$ $x(\log \log x)^{k-1} /(k-1)!\log x$. Selberg considered $D_{z}(x)$ not only for its own sake but also with an intension to derive

$$
\begin{equation*}
\pi_{k}(x)=\frac{x Q(\log \log x)}{\log x}+O\left(\frac{x(\log \log x)^{k}}{k!(\log x)^{2}}\right) \tag{2}
\end{equation*}
$$

uniformly for $1 \leq k \leq A \log \log x$, where $Q(x)$ is oplynomial of degree

