H. NakayaNagoya Math. J.Vol. 122 (1991), 149-159

THE GENERALIZED DIVISOR PROBLEM AND THE RIEMANN HYPOTHESIS

HIDEKI NAKAYA

Introduction

Let $d_{z}(n)$ be a multiplicative function defined by

$$\zeta^{z}(s) = \sum_{n=1}^{\infty} rac{d_{z}(n)}{n^{s}} \quad (\sigma > 1)$$

where $s = \sigma + it$, z is a complex number, and $\zeta(s)$ is the Riemann zeta function. Here $\zeta^{z}(s) = \exp(z \log \zeta(s))$ and let $\log \zeta(s)$ take real values for real s > 1. We note that if z is a natural number $d_{z}(n)$ coincides with the divisor function appearing in the Dirichlet-Piltz divisor problem, and $d_{-1}(n)$ with the Möbious function.

The generalized divisor problem is concerned with finding an asymptotic formula for $\sum_{n \le x} d_z(n)$, which was observed for real z > 0 by A. Kienast [6] and K. Iseki [4] independently. A. Selberg [8] considered for all complex z, his result being

(1)
$$D_z(x) \equiv \sum_{n \leq x} d_z(n) = \frac{x(\log x)^{z-1}}{\Gamma(z)} + O(x(\log x)^{\Re z-2})$$

uniformly for $|z| \leq A$, $x \geq 2$, where A is any fixed positive number.

Next, let $\pi_k(x)$ be the number of integers $\leq x$ which are products of k distinct primes. For k = 1, $\pi_k(x)$ reduces to $\pi(x)$, the number of primes not exceeding x. C. F. Gauss stated empirically that $\pi_2(x) \sim x(\log \log x)/\log x$, and, by using the prime number theorem, E. Landau proved that $\pi_k(x) \sim x(\log \log x)^{k-1}/(k-1)!\log x$. Selberg considered $D_z(x)$ not only for its own sake but also with an intension to derive

(2)
$$\pi_k(x) = \frac{xQ(\log\log x)}{\log x} + O\left(\frac{x(\log\log x)^k}{k!(\log x)^2}\right)$$

uniformly for $1 \le k \le A \log \log x$, where Q(x) is oplynomial of degree