H.-H. Kuo, J. Potthoff and L. Streit Nagoya Math. J. Vol. 121 (1991), 185-194

A CHARACTERIZATION OF WHITE NOISE TEST FUNCTIONALS

H.-H. KUO, J. POTTHOFF AND L. STREIT

§1. Introduction and main result

In a recent paper [PS 89], two of the present authors have found a characterization of a certain space $(\mathscr{S})^*$ of generalized functionals of white noise, i.e. generalized functionals on $\mathscr{S}'(\mathbb{R})$ equipped with the σ -algebra \mathscr{B} generated by its cyclinder sets and with the white noise measure μ given by

$$\int_{\mathscr{S}'(\mathbf{R})} \exp{(i\langle x,\xi\rangle)} d\mu(x) = \exp\left(-\frac{1}{2}|\xi|_2^2\right),$$

for $\xi \in \mathscr{S}(\mathbb{R})$. Here, $|\cdot|_2$ denotes the norm of $L^2(\mathbb{R})$, and $\langle \cdot, \cdot \rangle$ dual pairing. Below, we shall shortly recall the construction of the space $(\mathscr{S})^*$ as the dual of a space (\mathscr{S}) of "smooth" functionals on $\mathscr{S}'(\mathbb{R})$. The characterization mentioned above is of considerable power: it provides an extremely convenient way to decide whether a certain given functional is an element in $(\mathscr{S})^*$. This has been shown in [PS 89] for a number of examples (especially for certain measures on $\mathscr{S}'(\mathbb{R})$). The purpose of the present note is to give a similar characterization for the elements (\mathscr{S}) of test functionals. For notation, definitions, more background and references, we refer the reader to [PS 89].

Let $\Gamma(A)$ denote the second quantization of the self-adjoint $L^2(\mathbb{R})$ operator A which on $\mathscr{S}(\mathbb{R})$ is defined as

$$A\xi(u) = -\xi''(u) + (1+u^2)\xi(u), \qquad \xi \in \mathscr{S}(\mathbb{R}), \ u \in \mathbb{R}.$$

Let \mathscr{P} denote the algebra of smooth polynomials on $\mathscr{S}'(\mathbb{R})$, i.e. \mathscr{P} is generated by the random variables $X_{\xi} = \langle \cdot, \xi \rangle$, $\xi \in \mathscr{S}(\mathbb{R})$. For $p \geq 0$, let $\mathscr{S}_{p}(\mathbb{R})$ denote the completion of $\mathscr{S}(\mathbb{R})$ with respect to the norm $|\xi|_{2,p} = |A^{p}\xi|_{2}$, and let $(\mathscr{S})_{p}$ denote the completion of \mathscr{P} with respect to the norm

Received May 17, 1990.