H. Suzuki Nagoya Math. J. Vol. 121 (1991), 161-169

A GENERALIZATION OF HILBERT'S THEOREM 94

HIROSHI SUZUKI

In this paper we shall prove the following theorem conjectured by Miyake in [3] (see also Jaulent [2]).

THEOREM. Let k be a finite algebraic number field and K be an unramified abelian extension of k, then all ideals belonging to at least [K:k] ideal classes of k become principal in K.

Since the capitulation homomorphism is equivalently translated to a group-transfer of the galois group (see Miyake [3]), it is enough to prove the following group-theoretical verison:

THEOREM (The group-theoretical version). Let H be a finite group and N be a normal subgroup of H containing the commutator subgroup H^{c} of H. Then [H: N] divides the order of the kernel of the group-transfer $V_{H \to N}$: $H^{ab} \to N^{ab}$.

Hilbert's theorem 94 and the principal ideal theorem immediately follow from our theorem.

§1. Notations and two lemmas

For a group H, we denote the commutator group of H by H^c , and the augmentation ideal of the integral group algebra $\mathbf{Z}[H]$ by I_H . Put also

$$egin{array}{ll} H^{a\,b} &= H/H^c \;, \ {
m Tr}_{_H} &= \sum\limits_{g\,\in\,H} g \in {f Z}[H] \;, \end{array}$$

and

$$A_{H} = \mathbf{Z}[H]/(\mathrm{Tr}_{H}) \,.$$

For a $\mathbb{Z}[H]$ -module M, we denote the $\mathbb{Z}[H]$ -submodule consisting of all the *H*-invariant elements of M by M^{H} and the Pontrjagin dual of M by

Received March 28, 1990.