A. J. Lazarus

Nagoya Math. J.
Vol. 121 (1991), 1-13

ON THE CLASS NUMBER AND UNIT INDEX OF SIMPLEST QUARTIC FIELDS

ANDREW J. LAZARUS

§ 1. Introduction

The term "simplest" field has been used to describe certain totally real, cyclic number fields of degrees $2,3,4,5,6$, and 8 . For each of these degrees, the fields are defined by a one-parameter family of polynomials with constant term ± 1. The regulator of these "simplest" fields is small in an asymptotic sense: in consequence, the class number of these fields tends to be large.

The simplest quartic fields are defined by adjunction to \mathbf{Q} of a root of
(*) $\quad P_{t}=X^{4}-t X^{3}-6 X^{2}+t X+1, \quad t \in \mathbf{Z}^{+}$
where $t^{2}+16$ is not divisible by an odd square [5]. Here t may be specified greater than zero since P_{t} and P_{-t} generate the same extension. This polynomial is reducible precisely when $t^{2}+16$ is a square, which occurs only for the excluded cases $t=0,3$.

Gras [5] shows that the form $T^{2}+16$ represents infinitely many square-free integers, so this family is infinite. As an example of why the odd-square-free restriction is important, note that $t=22$, for which $t^{2}+16=500$, defines the same field as $t=2$.

Some of the simplest fields arise from torsion elements in $\operatorname{PSL}(2, \mathbf{Q})$ acting as linear fractional transformations on one given root [3]. The matrix $\left(\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right)$ has order 4; the cyclic Galois action on the roots of (*) is given by $\varepsilon \mapsto(\varepsilon-1) /(\varepsilon+1)$.

Remark. References to other examples of simplest fields may be found in [10].

Notation. Throughout K will be a real cyclic quartic field, simplest unless stated otherwise, and k will be the unique quadratic subfield. Let

Received December 21, 1989.

