S. Konno Nagoya Math. J. Vol. 113 (1989), 129-146

EISENSTEIN SERIES IN HYPERBOLIC 3-SPACE AND KRONECKER LIMIT FORMULA FOR BIQUADRATIC FIELD

SHUJI KONNO

§0. Introduction

Let L = kK be the composite of two imaginary quadratic fields kand K. Suppose that the discriminants of k and K are relatively prime. For any primitive ray class character χ of L, we shall compute $L(1, \chi)$ for the Hecke L-function in L. We write f for the conductor of χ and C for the ray class modulo f. Let $c \in C$ be any integral ideal prime to f. We write $\alpha = c/(\vartheta_L f) = g\omega_1 + n\omega_2$ as g-module where g, n and ϑ_L are, respectively, the ring of integers in k, an ideal in k and the differente of L. Let $L(s, \chi) = T(\chi)^{-1} \sum_C \bar{\chi}(C) \Psi(C, s)$ where $T(\chi)$ is the Gaussian sum and, as in (3.2),

$${\mathscr \Psi}(C,s) = N_{{\scriptscriptstyle L}/{\pmb Q}}({\mathfrak a})^s \sum_{\scriptscriptstyle (\mu)\,{\mathfrak f}}^{\prime\prime} e^{2\pi i\,T\,r_{L}/{\pmb Q}(\mu)} |N_{{\scriptscriptstyle L}/{\pmb Q}}(\mu)|^{-s}\,.$$

In § 1, 2, for each pair of ideals $(\mathfrak{m}, \mathfrak{n})$ in k, we associate Eisenstein series in hyperbolic 3-space having characters. For this series, we show the Kronecker limit formula. In § 3, 4, we show that $\mathcal{V}(C, s)$ is written as the constant term in the Fourier expansion of the Eisenstein series with reference to the hyperbolic substitution of $SL_2(k)$ (Theorems 4.3, 4.4). In § 5, we compute the Kronecker limit formula for $\mathcal{V}(C, s)$ (Theorems 5.6, 5.7). The limit formula is written as the Fourier cosine series of $\omega + \tilde{\omega}$ $(\omega = \omega_1^{-1}\omega_2)$ whose coefficients are functions of $\omega - \tilde{\omega}$ where $\tilde{\omega}$ is the conjugate of ω over k.

NOTATIONS. We denote by Z, Q, R and C, respectively, the ring of rational integers, the rational number field, the real number field and the complex number field. For $z \in C$, \overline{z} denotes the complex conjugate of z. We write $S(z) = z + \overline{z}$ and $|z|^2 = z\overline{z}$. For $z \in C$, \sqrt{z} means $-\pi/2$ $\langle \arg \sqrt{z} \leq \pi/2$. For an associative ring A with identity element, A^{\times}

Received August 6, 1987.