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A LIPMAN'S TYPE CONSTRUCTION, GLUEINGS

AND COMPLETE INTEGRAL CLOSURE

VALENTINA BARUCCI

§ 0. Introduction

Given a semilocal 1-dimensional Cohen-Macauly ring A, J. Lipman

in [10] gives an algorithm to obtain the integral closure A of A, in terms

of prime ideals of A. More precisely, he shows that there exists a

sequence of rings A = 4 0 c A 1 c c A i C , where, for each ί, i > 0,

Ai+1 is the ring obtained from At by "blowing-up" the Jacobson radical

9ί% of A,, i.e. Ai+ι = (J n (^? :^?) . It turns out that UiA. ί^O} = A

(cf. [10, proof of Theorem 4.6]) and, if A is a finitely generated A-module,

the sequence {At; i > 0} is stationary for some m and Am = A, so that

(+) A = Λ S A g ••• ̂ A w = A.

In [15] G. Tamone studies when in the Lipman's sequence ( + ) At is

a "glueing of primary ideals of Ai+1 over a prime ideal of A" (see [14]

for definition). She shows in particular that At is not always a glueing

of primary ideals of Ai+1.

In this paper we give an algorithmic construction, for a Noetherian

domain A of any dimension, such that A is a finitely generated A-module,

defining a new sequence {A*; i > 0} of overrings of A; Aί+1 is obtained

from At, taking the dual of a distinguished radical ideal of At. We show

that such a sequence is stationary for some m, Am = A (cf. Theorem 1.8),

and A?: is always a glueing of primary ideals of Ai+ί (cf. Proposition 2.7

and Remark 2.2, a)).

A similar sequence was considered in [17] by K. Yoshida in the case

of a Noetherian ring satisfying the Si-condition. As a matter of fact, the

intermediate rings of the Yoshida sequence are defined in a rather differ-

ent way, but the prime ideals occuring in their definition are linked to

those that we use in our sequence (cf. for more details Remark 1.7).
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