L. Beznea Nagoya Math. J. Vol. 112 (1988), 125-142

ULTRAPOTENTIALS AND POSITIVE EIGENFUNCTIONS FOR AN ABSOLUTELY CONTINUOUS RESOLVENT OF KERNELS

LUCIAN BEZNEA

Intro duction

Let (X, \mathscr{B}) be a measurable space and \mathscr{V} be a submarkovian resolvent of kernels (with the initial kernel V proper) on X which is absolutely continuous and has a dual resolvent (with the same properties) with respect to a σ -finite measure.

A positive numerical function s on X is called *V*-ultrapotential if it is \mathscr{V} -excessive (in particular \mathscr{V} -a.e. finite) and if the following condition is fulfilled: for every integer $n \geq 1$, there exists a positive \mathscr{B} -measurable function f_n on X such that $s = V^n(f_n)$, where V^n is the *n*-th iteration of the kernel V.

The main purpose of this paper (see Theorem 3.5 and Corollary 3.6) is to prove that, under a "regularity" condition (which will be discussed in the last part of Section 2) on the resolvent \mathscr{V} , for each V-ultrapotential s there exist a finite positive Borel measure σ on the open interval $]0, \infty[$ and a family $(s_{\lambda})_{0<\lambda<\infty}, s_{\lambda}$ being a positive λ -eigenfunction of V (i.e. $V(s_{\lambda}) = \lambda \cdot s_{\lambda}$ and s_{λ} is \mathscr{V} -a.e. finite), for any $\lambda > 0$, such that for each $x \in X$ the numerical function $\lambda \mapsto s_{\lambda}(x)$, defined on $]0, \infty[$, is σ -measurable and

$$s(x) = \int s_{\lambda}(x) d\sigma(\lambda) \,.$$

In fact, this type of representation is given for a slightly more general class of excessive functions, as the V-ultrapotentials.

An uniqueness of the representation and a converse statement are also proved.

These results are analogous, in this context, with those obtained by M. Itô and N. Suzuki in [7] (see also [6]) for the set up of diffusion semi-

Received May 6, 1987.