UNIT THEOREMS ON ALGEBRAIC TORI

HYUN KWANG KIM

Let k be a p-adic field (a finite extension of Q_p) or an algebraic number field (a finite extension of Q). Let T be an algebraic torus defined over k. We denote by \hat{T} the character module of T (i.e. $\hat{T} = \text{Hom}(T, G_m)$), where G_m is the multiplicative group.

As is well-known (cf. [7]), T is split by a finite galois extension K/k. We denote by G the galois group of K/k. Then \hat{T} becomes naturally a G-module. Since the map $T \to \hat{T}$ yields a canonical isomorphism between the category of tori defined over k and split by K and the dual category of finitely generated Z-free G-modules, it is natural to use $\operatorname{Hom}_G(\hat{T}, M_K)$ as a definition of an object relative to T over k when M_K is a G-module of arithmetical interest related to K.

In this paper, we will determine the structure of $\operatorname{Hom}_{G}(\hat{T}, O_{K}^{\times})$ where O_{K}^{\times} is the group of units of K and will discuss the meaning of this group.

§ 1. Local unit theorem

Let k be a p-adic field. First we recall the structure of O_k^{\times} . Let π be a prime element of k and let U_1 be the group of one units of k i.e. $U_1 = 1 + \pi O_k$. Z_p acts on U_1 as follows:

Let $a = a_0 + a_1p + \cdots + a_np^n + \cdots \in \mathbb{Z}_p$ and $u \in U_1$. Set $a_n = \sum_{i=0}^n a_ip^i$. Then $\{u^{a_n}\}$ is a Cauchy sequence in U_1 . Since U_1 is compact, the limit exists and denoted by u^a .

So we can view U_1 as \mathbb{Z}_p -module. We have the following proposition (cf. [5]).

(1.1) Proposition. $U_1 \approx W(U_1) \times Z_p^{[k,Q_p]}$, where $W(U_1)$ is the group of roots of unity in U_1 .

Now $O_k/(\pi)$ has $q=p^s$ elements. Let η be a primitive (q-1) th root of unity in O_k . Then

Received April 27, 1987.