INTEGRAL REPRESENTATION OF SMOOTH FUNCTIONS IN WEIGHT CLASSES AND ITS APPLICATION

TAKAHIDE KUROKAWA

§1. Introduction

Let \mathbb{R}^n be the *n*-dimensional Euclidean space, and for each point $x = (x_1, \dots, x_n)$ we write $|x| = (x_1^2 + \dots + x_n^2)^{1/2}$. For a multi-index $\alpha = (\alpha_1, \dots, \alpha_n)$, we denote by x^{α} the monomial $x_1^{\alpha_1} \cdots x_n^{\alpha_n}$, which has degree $|\alpha| = \sum_{j=1}^n \alpha_j$. Similarly, if $D_j = \partial/\partial x_j$ for $1 \leq j \leq n$, then

$$D^{\alpha} = D_1^{\alpha_1} \cdots D_n^{\alpha_n}$$

denotes a differential operator of order $|\alpha|$. We also write $\alpha! = \alpha_1! \cdots \alpha_n!$. Throughout this paper, let 1 and <math>(1/p) + (1/p') = 1. For a real number r, we denote by $L^{p,r}$ the class of all measurable functions f for which

$$||f||_{p,r} = \left(\int |f(x)(1+|x|)^r|^p dx\right)^{1/p} < \infty$$
.

The notation \mathscr{D} denotes the *LF*-space consisting of all C^{∞} -functions with compact support. The symbol \mathscr{D}' stands for the topological dual of \mathscr{D} . Let *m* be a positive integer. We denote by $L_m^{p,r}$ the space of all $u \in \mathscr{D}'$ such that $D^{\alpha}u \in L^{p,r}$ for any α with $|\alpha| = m$. We set

$$|u|_{m;p,r} = \sum_{|lpha|=m} ||D^{lpha}u||_{p,r}$$
 .

If u belongs to \mathcal{D} , then u can be represented by its partial derivatives of *m*-th order as follows (Yu.G. Reshetnyak [4]):

$$u(x) = \sum_{|\alpha|=m} \frac{m}{\sigma_n \alpha!} \int \frac{(x-y)^{\alpha}}{|x-y|^n} D^{\alpha} u(y) dy,$$

where σ_n denotes the surface area of the unit sphere. In this paper, we are concerned with integral representation of $u \in C^{\infty} \cap L_m^{p,r}$ and its integral

Received July 13, 1985.

Revised May 29, 1987.