A. Nowicki

Nagoya Math. J.
Vol. 109 (1988), 151-157

ON THE JACOBIAN EQUATION $J(f, g)=0$
 FOR POLYNOMIALS IN $k[x, y]$

ANDRZEJ NOWICKI

Let $k[x, y]$ be the ring of polynomials in two variables over a field k of characteristic zero.

If $f, g \in k[x, y]$ then we write $f \sim g$ in the case where $f=a g$, for some $a \in k^{*}=k \backslash\{0\}$, and we denote by $[f, g]$ the jacobian of (f, g), that is, $[f, g]=f_{x} g_{y}-f_{y} g_{x}$.

By a direction we mean a pair (p, q) of integers such that $\operatorname{gcd}(p, q)$ $=1$ and $p>0$ or $q>0$. If (p, q) is a direction then we say that a nonzero polynomial $f \in k[x, y]$ is a (p, q)-form of degree n if f is of the form

$$
f=\sum_{p i+q_{j}=n} a_{i j} x^{i} y^{j},
$$

where $a_{i j} \in k$.
The following two facts are well known
Theorem 0.1 ([1], [3], [2]). Let (p, q) be a direction and let f and g be (p, q)-forms of positive degrees. If $[f, g]=0$ then there exists $a(p, q)$ form h such that $f \sim h^{m}$ and $g \sim h^{n}$, for some natural m, n.

Theorem 0.2 ([2], [7]). Let f and g be polynomials in $k[x, y]$ and assume that $[f, g]$ is a non-zero constant. Put $\operatorname{deg}(f)=d m>1, \operatorname{deg}(g)=$ $d n>1$, where $\operatorname{gcd}(m, n)=1$. Let W_{f} and W_{g} be the Newton's polygons of f and g, respectively. Then the polygons W_{f} and W_{g} are similar. More precisely, there exists a convex polygon W with vertices in $Z \times Z$ such that $W_{f}=m W$ and $W_{g}=n W$.

Theorem 0.1 plays an essential role in considerations about the Jacobian Conjecture (see for example [1], [3], [2], [5]). Theorem 0.2 is also a consequence of Theorem 0.1.

In this note we show that Theorem 0.1 is a special case of a more general fact. We prove (see Section 1) that if f and g are non-constant

[^0]
[^0]: Received October 22, 1986.

