THE MODULAR EQUATION AND MODULAR FORMS OF WEIGHT ONE

TOYOKAZU HIRAMATSU and YOSHIO MIMURA
Dedicated to Martin Eichler

§ 1. Introduction

This is a continuation of the previous paper [8] concerning the relation between the arithmetic of imaginary quadratic fields and cusp forms of weight one on a certain congruence subgroup. Let K be an imaginary quadratic field, say $K=\boldsymbol{Q}(\sqrt{-q})$ with a prime number $q \equiv-1 \bmod 8$, and let h be the class number of K. By the classical theory of complex multiplication, the Hilbert class field L of K can be generated by any one of the class invariants over K, which is necessarily an algebraic integer, and a defining equation of which is denoted by

$$
\Phi(x)=0 .
$$

The purpose of this note is to establish the following theorem concerning the arithmetic congruence relation for $\Phi(x)$:

Theorem I. Let p be any prime not dividing the discriminant D_{ϕ} of $\Phi(x)$, and \boldsymbol{F}_{p} the p-element field. Suppose that the ideal class group of K is cyclic. Then we have

$$
\#\left\{x \in \boldsymbol{F}_{p}: \Phi(x)=0\right\}=\frac{h}{6} a(p)^{2}+\frac{h}{6} a(p)-\frac{1}{2}\left(\frac{-q}{p}\right)+\frac{1}{2},
$$

where $a(p)$ denotes the pth Fourier coefficient of a cusp form which will be defined by (1) in Section 2.3 below. One notes that in case $p=2$, we have $(-q / p)=1$.

§ 2. Proof of Theorem I

2.1. Let Λ be a lattice in the complex plane \boldsymbol{C}, and define

[^0]
[^0]: Received August 22, 1984.

