K. Enomoto Nagoya Math. J. Vol. 100 (1985), 135-143

UMBILICAL POINTS ON SURFACES IN R^N

KAZUYUKI ENOMOTO

Let $\varphi: M \to \mathbb{R}^N$ be an isometric imbedding of a compact, connected surface M into a Euclidean space \mathbf{R}^{N} . ψ is said to be umbilical at a point p of M if all principal curvatures are equal for any normal direction. It is known that if the Euler characteristic of M is not zero and N = 3, then ψ is umbilical at some point on M. In this paper we study umbilical points of surfaces of higher codimension. In Theorem 1, we show that if M is homeomorphic to either a 2-sphere or a 2-dimensional projective space and if the normal connection of ψ is flat, then ψ is umbilical at some point on M. In Section 2, we consider a surface M whose Gaussian curvature is positive constant. If the surface is compact and N=3, Liebmann's theorem says that it must be a round sphere. However, if $N \geq 4$, the surface is not rigid: For any isometric imbedding Φ of R^{3} into $\mathbf{R}^{*} \Phi(S^{2}(\mathbf{r}))$ is a compact surface of constant positive Gaussian curvature $1/r^2$. We use Theorem 1 to show that if the normal connection of ψ is flat and the length of the mean curvature vector of ψ is constant, then $\psi(M)$ is a round sphere in some $\mathbb{R}^3 \subset \mathbb{R}^N$. When N = 4, our conditions on ψ is satisfied if the mean curvature vector is parallel with respect to the normal connection. Our theorem fails if the surface is not compact, while the corresponding theorem holds locally for a surface with parallel mean curvature vector (See Remark (i) in Section 3).

The author wishes to thank Professor Hung-Hsi Wu for his constant encouragement and valuable suggestions.

§1. Preliminaries

Let M be a connected *n*-dimensional C^{∞} Riemannian manifold and let $\psi: M \to \mathbb{R}^N$ be an isometric immersion of M into an N-dimensional Euclidean space \mathbb{R}^N . Let D and \overline{D} denote the covariant differentiations of M and \mathbb{R}^N respectively. Let X, Y be tangent vector fields on M. Then

Received August 16, 1984.