N. Gupta and K. Tahara Nagoya Math. J. Vol. 100 (1985), 127-133

DIMENSION AND LOWER CENTRAL SUBGROUPS OF METABELIAN *P*-GROUPS

NARAIN GUPTA* AND KEN-ICHI TAHARA

To the memory of the late Takehiko Miyata

§1. Introduction

It is a well-known result due to Sjogren [9] that if G is a finitely generated p-group then, for all $n \leq p - 1$, the (n + 2)-th dimension subgroup $D_{n+2}(G)$ of G coincides with $\gamma_{n+2}(G)$, the (n + 2)-th term of the lower central series of G. This was earlier proved by Moran [5] for $n \leq p - 2$. For p = 2, Sjogren's result is the best possible as Rips [8] has exhibited a finite 2-group G for which $D_4(G) \neq \gamma_4(G)$ (see also Tahara [10, 11]). In this note we prove that if G is a finitely generated metabelian p-group then, for all $n \leq p$, $D_{n+2}^2(G) \subseteq \gamma_{n+2}(G)$. It follows, in particular, that, for p odd, $D_{n+2}(G) = \gamma_{n+2}(G)$ for all $n \leq p$ and all metabelian p-groups G.

§2. Notation and preliminaries

While the central idea of the proof of our main result stems from Gupta [1], with a slight repetition, it is equally convenient to give a self-contained proof using a less cumbersome notation.

Let $\mathfrak{f} = ZF(F-1)$ denote the augmentation ideal of the integral group ring ZF of a free group F freely generated by $x_1, x_2, \dots, x_m, m \ge 2$. For a fixed prime p, let $(p^{\alpha_1}, p^{\alpha_2}, \dots, p^{\alpha_m}), \alpha_1 \ge \alpha_2 \ge \dots \ge \alpha_m > 0$ be an *m*-tuple of p-powers, and let $S = \langle x_1^{p^{\alpha_1}}, x_2^{p^{\alpha_2}}, \dots, x_m^{p^{\alpha_m}}, F' \rangle$ be the normal subgroup of F so that F/S is abelian. Set $\mathfrak{z} = ZF(S-1)$, the ideal of ZF generated by all elements $s-1, s \in S$. For $1 \le n \le p$, we shall need to investigate the structure of the subgroup $D_{n+2}(\mathfrak{f}\mathfrak{z}) = F \cap (1 + \mathfrak{f}\mathfrak{z} + \mathfrak{f}^{n+2})$ of F which consists of all elements $w \in F$ such that $w - 1 \in \mathfrak{f}\mathfrak{z} + \mathfrak{f}^{n+2}$. It is clear that $[F', S]\mathfrak{r}_{n+2}(F) \subseteq D_{n+2}(\mathfrak{f}\mathfrak{z})$.

*) Research supported by N.S.E.R.C., Canada.

Let $w \in D_{n+2}(\mathfrak{f}\mathfrak{S})$ be an arbitrary element. Then $w - 1 \in \mathfrak{f}^2$ and it Received July 25, 1984.