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AFFINE HYPERSURFACES WITH PARALLEL CUBIC FORM
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§1. Introduction

As is well known, there exists a canonical transversal vector field on a non-

degenerate affine hypersurface M. This vector field is called the affine normal.

The second fundamental form associated to this affine normal is called the affine

metric. If M is locally strongly convex, then this affine metric is a Riemannian

metric. And also, using the affine normal and the Gauss formula one can introduce

an affine connection V on M which is called the induced affine connection. Thus

there are in general two different connections on M: one is the induced connection

V and the other is the Levi Civita connection V of the affine metric h. The differ-

ence tensor K is defined by K(X, Y) = KXY = VXY - VXY. The cubic form C is

defined by C = Vh and is related to the difference tensor by

h(KxY,Z) = -\c{X, Y,Z).

The classical Berwald theorem states that C vanishes identically on M, implying

that the two connections coincide, if and only if M is an open part of a

nondegenerate quadric.

In this paper we will consider the condition VC = 0 for a 4-dimensional

locally strongly convex affine hypersurface in R . Clearly VC = 0 if and only if

VK = 0. For surfaces this condition has been studied by M. Magid and K. Nomizu

in [MN], where they proved the following;

THEOREM A [MN]. Let M2 be an affine surface in R3 with VC = 0. Then either

M is an open part of a nondegenerate quadric (i.e. C = 0) or M is affine equivalent to

an open part of the following surfaces:
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