THICK SETS AND QUASISYMMETRIC MAPS

JUSSI VÄISÄLÄ, MATTI VUORINEN and HANS WALLIN

1. Introduction

1.1. Thickness. Let E be a real inner product space. For a finite sequence of points a_{0}, \ldots, a_{k} in E we let $a_{0} \ldots a_{k}$ denote the convex hull of the set $\left\{a_{0}, \ldots\right.$, $\left.a_{k}\right\}$. If these points are affinely independent, the set $\Delta=a_{0} \ldots a_{k}$ is a k-simplex with vertices a_{0}, \ldots, a_{k}. It has a well-defined k-volume written as $m_{k}(\Delta)$ or briefly as $m(\Delta)$. We are interested in sets $A \subset E$ which are "nowhere too flat in dimension k ". More precisely, suppose that $A \subset E, q>0$ and that k is a positive integer. We let $\bar{B}(x, r)$ denote the closed ball with center x and radius r. We say that A is (q, k)-thick if for each $x \in A$ and $r>0$ such that $A \backslash \bar{B}(x, r) \neq \emptyset$ there is a k-simplex Δ with vertices in $A \cap \bar{B}(x, r)$ such that $m_{k}(\Delta) \geq q r^{k}$.

It is easy to see that the closure \bar{A} of a (q, k)-thick set A is $\left(q^{\prime}, k\right)$-thick for each $q^{\prime}<q$. In the case $\operatorname{dim} E<\infty, \bar{A}$ is in fact (q, k)-thick. Conversely, if \bar{A} is (q, k)-thick, A is (q^{\prime}, k)-thick for all $q^{\prime}<q$. Without essential loss of generality, it is thus sufficient to consider only closed sets $A \subset E$.

We also say that A is k-thick if A is (q, k)-thick for some $q>0$. It is easy to see that a p-thick set is k-thick for all $k \leq p$.
1.2. Examples. We consider sets in the Euclidean n-space R^{n}. A set $A \subset R^{n}$ can be k-thick only for $k \leq n$. A k-dimensional ball and a k-cube are clearly k-thick but not p-thick for $p>k$. The Cantor middle-third set is 1 -thick. If A is an arc which has a tangent at some point, A is not 2 -thick. In particular, rectifiable arcs are not 2 -thick. On the other hand, the Koch snowflake curve in R^{2} is 2 -thick. A c-John domain [NV], 2.26, and its closure in R^{n} are (q, n)-thick with $q=q(c, n)$.
1.3. Background. Thick sets arise naturally from various questions of analysis. For example, in [Vä3], Th. 6.2 , it was proved that if A is compact and

[^0]
[^0]: Received June 22, 1992.

