J. Väisälä, M. Vuorinen and H. Wallin Nagoya Math. J. Vol. 135 (1994), 121–148

THICK SETS AND QUASISYMMETRIC MAPS

JUSSI VÄISÄLÄ, MATTI VUORINEN AND HANS WALLIN

1. Introduction

1.1. Thickness. Let E be a real inner product space. For a finite sequence of points a_0, \ldots, a_k in E we let $a_0 \ldots a_k$ denote the convex hull of the set $\{a_0, \ldots, a_k\}$. If these points are affinely independent, the set $\Delta = a_0 \ldots a_k$ is a k-simplex with vertices a_0, \ldots, a_k . It has a well-defined k-volume written as $m_k(\Delta)$ or briefly as $m(\Delta)$. We are interested in sets $A \subseteq E$ which are "nowhere too flat in dimension k". More precisely, suppose that $A \subseteq E$, q > 0 and that k is a positive integer. We let $\overline{B}(x, r)$ denote the closed ball with center x and radius r. We say that A is (q, k)-thick if for each $x \in A$ and r > 0 such that $A \setminus \overline{B}(x, r) \neq \emptyset$ there is a k-simplex Δ with vertices in $A \cap \overline{B}(x, r)$ such that $m_k(\Delta) \ge qr^k$.

It is easy to see that the closure \overline{A} of a (q, k)-thick set A is (q', k)-thick for each q' < q. In the case dim $E < \infty$, \overline{A} is in fact (q, k)-thick. Conversely, if \overline{A} is (q, k)-thick, A is (q', k)-thick for all q' < q. Without essential loss of generality, it is thus sufficient to consider only closed sets $A \subseteq E$.

We also say that A is k-thick if A is (q, k)-thick for some q > 0. It is easy to see that a p-thick set is k-thick for all $k \le p$.

1.2. EXAMPLES. We consider sets in the Euclidean *n*-space \mathbb{R}^n . A set $A \subset \mathbb{R}^n$ can be *k*-thick only for $k \leq n$. A *k*-dimensional ball and a *k*-cube are clearly *k*-thick but not *p*-thick for p > k. The Cantor middle-third set is 1-thick. If A is an arc which has a tangent at some point, A is not 2-thick. In particular, rectifiable arcs are not 2-thick. On the other hand, the Koch snowflake curve in \mathbb{R}^2 is 2-thick. A *c*-John domain [NV], 2.26, and its closure in \mathbb{R}^n are (q, n)-thick with q = q(c, n).

1.3. **Background.** Thick sets arise naturally from various questions of analysis. For example, in $[V\ddot{a}_3]$, Th. 6.2, it was proved that if A is compact and

Received June 22, 1992.