J. Gancarzewicz, W. Mikulski and Z. Pogoda Nagoya Math. J. Vol. 135 (1994), 1-41

LIFTS OF SOME TENSOR FIELDS AND CONNECTIONS TO PRODUCT PRESERVING FUNCTORS

JACEK GANCARZEWICZ, WŁODZIMIERZ MIKULSKI AND ZDZISŁAW POGODA

0. Introduction

In this paper we define some lifts of tensor fields of types (1, k) and (0, k) as well as connections to a product preserving functor \mathcal{F} . We study algebraic properties of introduced lifts and we apply these lifts to prolongation of geometric structures from a manifold M to $\mathcal{F}(M)$. In particular cases of the tangent bundle of p^r -velocities and the tangent bundle of infinitesimal near points our constructions contain all constructions due to Morimoto (see [20]-[23]). In the cases of the tangent bundle our definitions coincide with the definitions of Yano and Kobayashi (see [31]). To construct our lifts and to study its properties we use only general properties of product preserving functors. All lifts verify so-called *the naturality condition*. It means that for a smooth mapping $\varphi: M \to N$ and for two φ -related geometric objects defined on M and N its lifts to $\mathcal{F}(M)$ and $\mathcal{F}(N)$ respectively are $\mathcal{F}(\varphi)$ -related. We explain later the term φ -related for considered geometric objects.

In the presented paper we do not study problems of classifications of lifts.

A product preserving functor is a covariant functor \mathscr{F} from the category of manifolds into the category of fibered manifolds such that $\mathscr{F}(M_1 \times M_2)$ is equivalent to $\mathscr{F}(M_1) \times \mathscr{F}(M_2)$. In Section 1 we formulate properties of product preserving functors used in the present paper.

Let \mathscr{F} be a product preserving functor. In Section 2 we recall lifts of vector fields and functions to \mathscr{F} . Lifts of vector fields was introduced by Kolář in [14]. They are parametrized by elements of so-called the Weil algebra $A = \mathscr{F}(\mathbf{R})$ associated to \mathscr{F} . Lifts of functions to \mathscr{F} was studied by Mikulski in [17]. They depend on functions $\lambda : A \to \mathbf{R}$. The defined lifts verify the naturality condition.

Let $\varphi: M \to N$ be a smooth mapping. Vector fields X, Y defined on M and N respectively are called φ -related if the following diagram

Received June 10, 1993.