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ON A CLASS OF NUMBERS GENERATED

BY DIFFERENCIAL EQUATIONS RELATED

WITH ALGEBRAIC GROUPS
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Introduction

In this paper we propose a new category Q° of complex numbers which con-

tains π, e and the set of algebraic numbers. In fact this category contains most of

the numbers studied so far in number theory. An element of the category is here

called a classical number. The category of the classical numbers forms an algeb-

raically closed field and consists of countably many numbers. The definition de-

pends on algebraic differential equations related with algebraic groups. Through-

out the paper unless otherwise stated, we deal with functions of one variable and

a differential equation is an ordinary differential equation. We are inspired of the

Leςons de Stockholm of Painleve [P]. His objective was to discover new transcen-

dental functions defined by algebraic differential equations generalizing the Weier-

strass P -function. To this end there are two major tasks to be done. The first is

to find candidates of algebraic differential equations which may define new func-

tions. We are concerned with the second which is to check whether the candidates

really define new functions. So he introduced a class of functions inductively de-

fined from the field CCr) of the rational functions by admissible operations. In

[U4], [U6] we analyzed his operations and introduced the permissible operations

(0), (PI), ( P 2 ) , . . . ,(P5) (cf. §1). We proved that allowing the permissible opera-

tions is equivalent to admitting G-primitive extensions of differential fields in the

language of Kolchin. We defined the field of the classical functions as a field of the

meromorphic functions obtained from the field CCr) of the rational functions by a

finite iteration of permissible operations (cf. [U4]). All the functions related with

differential equations in [WW] are classical in this sense, for example e x p x ,

logx, the hypergeometric functions, the elliptic functions and so on. The irreduci-

bility theorem says that we can not solve the first differential equation of Painleve

starting from the field CCX) of the rational functions by any finite iteration of the
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