PROJECTIVE SURFACES WITH K-VERY AMPLE LINE BUNDLES OF DEGREE $\leq 4 K+4$

EDOARDO BALLICO and ANDREW J. SOMMESE

Introduction

A line bundle, L, on a smooth, connected projective surface, S, is defined [7] to be k-very ample for a non-negative integer, k, if given any 0 -dimensional subscheme $\left(Z, \mathscr{O}_{z}\right) \subset S$ with length $\left(Z, \mathscr{O}_{z}\right) \leq k+1$, it follows that the restriction map $\Gamma(L) \rightarrow \Gamma\left(L \otimes \mathscr{O}_{Z}\right)$ is onto. L is 1 -very ample (respectively 0 -very ample) if and only if L is very ample (respectively spanned at all points by global sections). For a smooth surface, S, embedded in projective space by $|L|$ where L is very ample, L being k-very ample is equivalent to there being no k-secant \mathbf{P}^{k-1} to S containing $\geq k+1$ points of S.

In this article we study pairs (S, L), where S is a smooth, projective surface and L is a k-very ample line bundle satisfying $L \cdot L \leq 4 k+4$.

In [8] M. Beltrametti and the second author studied the question of when L being k-very ample implies that $K_{S} \otimes L$ is k-very ample. This question generalizes classical questions for very ample bundles, and has a nice interpretation as a question about adjunction on $S^{[k]}$, the space of 0 -dimensional subschemes of length k on S (see the introduction to [8] for details).

That question breaks up naturally into the cases when $d:=L \cdot L \geq 4 k+5$ and the cases when $d \leq 4 k+4$. In [8], Beltametti and the second author gave a complete answer to the question for $d \geq 4 k+5$ using their generalization, [8], of the Reider criterion for spannedness and very ampleness. This division into two parts exists in the classical case for very ample line bundles (see [18]).

In §2 and §3 we prove a number of general results for k-very ample line bundles on curves and surfaces respectively.

With these results we turn in $\S 4$ to the study of special pairs (S, L) with $d \leq 4 k+4$, mainly \mathbf{P}^{1}-bundles and k-conic bundles. The study of such special classes is required by our approach based on [8, Theorem (3.1)]. That theorem says that either (S, L) is on a list of very special pairs or $k K_{S}+L$ is spanned

Received March 22, 1993.

