H.-X. Yi Nagoya Math. J. Vol. 138 (1995), 169–177

A QUESTION OF GROSS AND THE UNIQUENESS OF ENTIRE FUNCTIONS

HONG-XUN YI

1. Introduction and main results

For any set S and any entire function f let

$$E_f(S) = \bigcup_{a \in S} \{ z \, | \, f(z) - a = 0 \},$$

where each zero of f - a with multiplicity m is repeated m times in $E_f(S)$ (cf. [1]). It is assumed that the reader is familiar with the notations of the Nevanlinna Theory (see, for example, [2]). It will be convenient to let E denote any set of finite linear measure on $0 < r < \infty$, not necessarily the same at each occurrence. We denote by S(r, f) any quantity satisfying S(r, f) = o(T(r, f)) $(r \to \infty, r \notin E)$.

In 1976 Gross proved [3] that there exist three finite sets S_j (j = 1,2,3), such that any two entire functions f and g satisfying $E_f(S_j) = E_g(S_j)$ for j = 1,2,3 must be identical. In the same paper Gross posed the following open question (Question 6): can one find two (or possible even one) finite set S_j (j = 1,2) such that any two entire functions f and g satisfying $E_f(S_j) = E_g(S_j) = E_g(S_j)$ (j = 1,2) must be identical?

The present author [4] proved the following result which is partial answer of the above question.

THEOREM A. Let $S_1 = \{w \mid (w-a)^n - b^n = 0\}$, $S_2 = \{c\}$, where n > 4, a, b and c are constants such that $b \neq 0$, $c \neq a$ and $(c-a)^{2n} \neq b^{2n}$. Suppose that f and g are nonconstant entire functions satisfying $E_f(S_f) = E_g(S_f)$ for j = 1, 2. Then $f \equiv g$.

The set S such that for any two nonconstant entire functions f and g the condition $E_f(S) = E_g(S)$ implies $f \equiv g$ is called a unique range set (URS in brief) of

Received April 22, 1994.

Revised July 14, 1994.

This research was partially supported by the National Natural Science Fundation of China.