A QUESTION OF GROSS AND THE UNIQUENESS OF ENTIRE FUNCTIONS

HONG-XUN YI

1. Introduction and main results

For any set S and any entire function f let

$$
E_{f}(S)=\cup_{a \in S}\{z \mid f(z)-a=0\}
$$

where each zero of $f-a$ with multiplicity m is repeated m times in $E_{f}(S)$ (cf. [1]). It is assumed that the reader is familiar with the notations of the Nevanlinna Theory (see, for example, [2]). It will be convenient to let E denote any set of finite linear measure on $0<r<\infty$, not necessarily the same at each occurrence. We denote by $S(r, f)$ any quantity satisfying $S(r, f)=o(T(r, f)) \quad(r \rightarrow \infty, r \notin E)$.

In 1976 Gross proved [3] that there exist three finite sets $S_{j}(j=1,2,3)$, such that any two entire functions f and g satisfying $E_{f}\left(S_{j}\right)=E_{g}\left(S_{j}\right)$ for $j=1,2,3$ must be identical. In the same paper Gross posed the following open question (Question 6): can one find two (or possible even one) finite set $S_{j}(j=1,2)$ such that any two entire functions f and g satisfying $E_{f}\left(S_{j}\right)=$ $E_{g}\left(S_{f}\right)(j=1,2)$ must be identical ?

The present author [4] proved the following result which is partial answer of the above question.

Theorem A. Let $S_{1}=\left\{w \mid(w-a)^{n}-b^{n}=0\right\}, S_{2}=\{c\}$, where $n>4, a, b$ and c are constants such that $b \neq 0, c \neq a$ and $(c-a)^{2 n} \neq b^{2 n}$. Suppose that f and g are nonconstant entire functions satisfying $E_{f}\left(S_{j}\right)=E_{g}\left(S_{j}\right)$ for $j=1,2$. Then $f \equiv g$.

The set S such that for any two nonconstant entire funstions f and g the condition $E_{f}(S)=E_{g}(S)$ implies $f \equiv g$ is called a unique range set (URS in brief) of

Received April 22, 1994.
Revised July 14, 1994.
This research was partially supported by the National Natural Science Fundation of China.

