C. Sabbah Nagoya Math. J. Vol. 141 (1996), 107-124

ON THE COMPARISON THEOREM FOR ELEMENTARY IRREGULAR D-MODULES

CLAUDE SABBAH

Introduction

Let U be a smooth quasi-projective variety over \mathbb{C} and let f be a regular function on U. Let \mathcal{D}_U be the sheaf of algebraic differential operators on U and let \mathcal{M} be a regular holonomic \mathcal{D}_U -module: here, regular means that there exists some smooth compactification X of U and some extension of \mathcal{M} as a \mathcal{D}_X -module which is regular holonomic on X (one also may avoid the use of a *smooth* compactification to define regularity, see [17]).

Let \mathcal{M}_f be the \mathcal{D}_U -module obtained from \mathcal{M} by twisting by e'. By definition, \mathcal{M}_f is equal to \mathcal{M} as an \mathcal{O}_U -module; the operator $\nabla_f : \mathcal{M}_f \to \mathcal{Q}_U^1 \otimes_{\mathcal{O}_U} \mathcal{M}_f$ is equal to $e^{-f} \nabla e^f$, where ∇ is the operator $\mathcal{M} \to \mathcal{Q}_U^1 \otimes_{\mathcal{O}_U} \mathcal{M}$ given by the \mathcal{D}_U -module structure; we have $\nabla_f^2 = 0$ because $\nabla^2 = 0$ and this defines a \mathcal{D}_U -module structure on \mathcal{M}_f .

Let $\mathrm{DR}(\mathcal{N})$ be the algebraic de Rham complex of the holonomic \mathcal{D}_U -module \mathcal{N} :

$$(*) \qquad \qquad \mathrm{DR}(\mathcal{N}) = \{ 0 \to \mathcal{N} \xrightarrow{\nabla} \mathcal{Q}_{U}^{1} \otimes_{\mathcal{O}_{U}} \mathcal{N} \xrightarrow{\nabla} \mathcal{Q}_{U}^{2} \otimes_{\mathcal{O}_{U}} \mathcal{N} \xrightarrow{\nabla} \cdots \}$$

(it is now usual to consider that the term corresponding to $\Omega^{\dim U}$ is in degree 0, but it will not matter here and we shall not shift this complex). We shall give a formula for the hypercohomology of $DR(\mathcal{M}_f)$, *i.e.* the cohomology of the complex $R\Gamma(U, DR(\mathcal{M}_f))$. If U is affine, this is the cohomology of the complex $DR(\mathcal{M}_f(U))$ of global sections over U.

This result was conjectured in [1] in a particular case, where U is the complement of an arrangement of hyperplanes in general position in \mathbf{C}^{l} and \mathcal{M} is a rank one locally free \mathcal{O}_{U} -module.

In fact, the global comparison theorem we give is essentially equivalent to the one given in [8] (see also [15] and [22]).

We shall use this result to obtain vanishing theorems of the type given in [1] Received October 18, 1994.