J. Hano

Nagoya Math. J.
Vol. 141 (1996), 79-105

CONFORMAL IMMERSIONS OF COMPACT RIEMANN SURFACES INTO THE $2 n$-SPHERE ($n \geq 2$)

JUN-ICHI HANO

The purpose of this article is to prove the following theorem:
Let n be a positive integer larger than or equal to 2 , and let $S^{2 n}$ be the unit sphere in the $2 n+1$ dimensional Euclidean space. Given a compact Riemann surface, we can always find a conformal and minimal immersion of the surface into $S^{2 n}$ whose image is not lying in any $2 n-1$ dimensional hyperplane.

This is a partial generalization of the result by R. L. Bryant. In this papers, he demonstrates the existence of a conformal and minimal immersion of a compact Riemann surface into $S^{2 n}$, which is generically $1: 1$, when $n=2$ ([2]) and $n=3$ ([1]).

We start with an idea formulated by Bryant in his paper [2], which is also fundamental for our proof. Let \mathbf{V} be the set of all maximal isotropic subspaces in $\mathbf{C}^{2 n+1}$ with respect to the complex symmetric bilinear form, the extension of the standard inner product on $\mathbf{R}^{2 n+1}$. The set \mathbf{V} is a connected compact complex manifold and has a natural projection π on the unit sphere $S^{2 n}$, defining the twistor bundle $\left(\mathbf{V}, \pi, S^{2 n}\right)$, where the $\mathrm{SO}(2 n+1)$-actions on \mathbf{V} and on $S^{2 n}$ are equivariant under the projection π. Beginning with E. Calabi's work ([5], [6]), the twister bundle plays an important role in the geometry of minimal surfaces, or more generally harmonic maps of surfaces, in $S^{2 n}$. (For recent developments on twistor bundles over even dimensional Riemannian symmetric spaces and their applications, we refer to Bryant [3], Burstall-Rawnsley [4]).

There is a distribution \mathbf{T} on \mathbf{V} perpendicular to the fibre at each point with respect to any Riemannian metric invariant under the $\operatorname{SO}(2 n+1)$-action, which is not integrable, but is holomorphic [2]. An oriented surface immersed in $S^{2 n}$ has a complex structure canonically determined by the orientation and the first fundamental form. The basic idea of Bryant's proof [2] is that if a Riemann surface M admits an anti-holomorphic immersion φ into \mathbf{V} whose image is tangent to the distribution \mathbf{T} at each point on M, then $\pi, \varphi: M \rightarrow S^{2 n}$ is a minimal and conformal

[^0]
[^0]: Received November 25, 1994.

