K. Sato, T. Watanabe, K. Yamamuro and M. Yamazato Nagoya Math. J. Vol. 141 (1996), 45-78

MULTIDIMENSIONAL PROCESS OF ORNSTEIN-UHLENBECK TYPE WITH NONDIAGONALIZABLE MATRIX IN LINEAR DRIFT TERMS

KEN-ITI SATO, TOSHIRO WATANABE, KOUJI YAMAMURO and MAKOTO YAMAZATO

1. Introduction and results

Let \mathbf{R}^d be the *d*-dimensional Euclidean space where each point is expressed by a column vector. Let |x| and $\langle x, y \rangle$ denote the norm and the inner product in \mathbf{R}^d . Let $Q = (Q_{jk})$ be a real $d \times d$ -matrix of which all eigenvalues have positive real parts. Let \mathbf{X} be a process of Ornstein-Uhlenbeck type (OU type process) on \mathbf{R}^d associated with a Lévy process $\{Z_t : t \ge 0\}$ and the matrix Q. Main purpose of this paper is to give a recurrence-transience criterion for the process \mathbf{X} when Qis a Jordan cell matrix and to compare it with the case when Q is diagonalizable. Here by a Lévy process we mean a stochastically continuous process with stationary independent increments, starting at 0. By saying that Q is a Jordan cell matrix (with eigenvalue α) we mean that

 $Q_{jj} = \alpha$ for $1 \le j \le d$, $Q_{j,j+1} = 1$, for $1 \le j \le d - 1$, and $Q_{jk} = 0$ otherwise.

This paper continues the work [1], where a recurrence-transience criterion is established when Q is diagonalizable. In one dimension the criterion is given by Shiga [5].

Precise definition of the process \mathbf{X} by its infinitesimal generator is given in [1] and [3]. It is a Markov process $(\Omega, \mathcal{F}, \mathcal{F}_t, \mathbf{P}^x, X_t)$ on \mathbf{R}^d such that the process $\{X_t : t \ge 0\}$ under the probability measure \mathbf{P}^x is equivalent to the process $\{\bar{X}_t\}$ defined by

(1.1)
$$\bar{X}_t = e^{-tQ} x + \int_0^t e^{-(t-r)Q} dZ_r,$$

Received February 22, 1994.