HYPONORMAL TOEPLITZ OPERATORS ON $H^2(T)$ WITH POLYNOMIAL SYMBOLS

DAHAI YU*

Let T be the unit circle on the complex plane, $H^2(T)$ be the usual Hardy space on T, T_{ϕ} be the Toeplitz operator with symbol $\phi \in L^{\infty}(T)$, C. Cowen showed that if f_1 and f_2 are functions in H^2 such that $f = f_1 + \bar{f}_2$ is in L^{∞} , then T_f is hyponormal if and only if $f_2 = c + T_{\overline{R}} f_1$ for some constant c and some function g in H^{∞} with $\|g\|_{\infty} \leq 1$ [1]. Using it, T. Nakazi and K. Takahashi showed that the symbol of hyponormal Toeplitz operator T_ϕ satisfies $\phi-g=kar{\phi}$, $g\in H^\infty$ and $k \in H^{\infty}$ with $||k|| \le 1$ [2], and they described the ϕ solving the functional equation above. Both of their conditions are hard to check, T. Nakazi and K. Takahashi remarked that even "the question about polynomials is still open" [2]. Kehe Zhu gave a computing process by way of Schur's functions so that we can determine any given polynomial ϕ such that T_ϕ is hyponormal [3]. Since no closed-form for the general Schur's function is known, it is still valuable to find an explicit expression for the condition of a polynomial ϕ such that T_ϕ is hyponormal and depends only on the coefficients of ϕ , here we have one, it is elementary and relatively easy to check. We begin with the most general case and the following Lemma is essential.

LEMMA 1. If $f, g \in H^2(T)$ and $\phi = f + \bar{g} \in L^{\infty}(T)$, then T_{ϕ} is hyponormal if and only if the (bounded) operator A on l^2

(1)
$$A = (A_{ij}) \equiv (A_f(i, j) - A_g(i, j))$$
$$\equiv (\langle S^{*'}f, S^{*'}f \rangle - \langle S^{*'}g, S^{*'}g \rangle) \ i, j \ge 1$$

is non-negative where S refers to the unilateral shift on $H^2(T)$.

Proof. By definition T_{ϕ} is hyponormal when ${T_{\phi}}^*T_{\phi}-{T_{\phi}}T_{\phi}^*\geq 0$, i.e. $(T_{f+\overline{g}})^*T_{f+\overline{g}}-T_{f+\overline{g}}(T_{f+\overline{g}})^*=(T_f^*T_f-T_fT_f^*)-(T_g^*T_g-T_gT_g^*)\geq 0$, the Lemma

Received March 9, 1995.

^{*} supported by NNSFC