A. Kudo

Nagoya Math. J.
Vol. 144 (1996), 155-170

ON p-ADIC DEDEKIND SUMS

AICHI KUDO

§1. Introduction

For positive integers h, k and m, the higher-order Dedekind sums are defined by

$$
S_{m+1}^{(r)}(h, k)=\sum_{a=0}^{k-1} \bar{B}_{m+1-r}\left(\frac{a}{k}\right) \bar{B}_{r}\left(\frac{h a}{k}\right), \quad 0 \leq r \leq m+1
$$

where $\bar{B}_{n}(x), n \geq 0$, are the Bernoulli functions (§2). If m is odd and $(h, k)=1$, the sum $S_{m+1}^{(m)}(h, k)$ is identical with the higher-order Dedekind sum of Apostol [1],

$$
s_{m}(h, k)=\sum_{a=1}^{k-1} \frac{a}{k} \bar{B}_{m}\left(\frac{h a}{k}\right) .
$$

Recently, Rosen and Snyder [6] constructed a p-adic continuous function $S_{p}(s ; h, k)$ for an odd prime p, which takes the values

$$
S_{p}(m ; h, k)= \begin{cases}k^{m} s_{m}(h, k)-p^{m-1} k^{m} s_{m}\left(\left(p^{-1} h\right)_{k}, k\right), & \text { if }(k, p)=1, \\ k^{m} s_{m}(h, k), & \text { if } k=p,\end{cases}
$$

at positive integers m such that $m+1 \equiv 0(\bmod p-1)$; here $\left(p^{-1} h\right)_{k}$ denotes the integer x such that $0 \leq x<k$ and $p x \equiv h(\bmod k)$.

The purpose of this paper is to extend this result of them to $k^{m} S_{m+1}^{(r)}(h, k)$ for every h, k and $r \geq 1$. To this end, we use an expression of $k^{m} S_{m+1}^{(r)}(h, k)$ in terms of the Euler numbers ([2], [3]) and a p-adic continuous function which interpolates these numbers ([7], [8]).

Let p be a prime number and Z_{p} the ring of rational p-adic integers. Let $e=$ $p-1$ or $e=2$ according as $p>2$ or $p=2$. In $\S \S 2-3$, we shall prove the following

[^0]
[^0]: Received February 27, 1989.

