M. Sugiura Nagoya Math. J. Vol. 144 (1996), 137–154

EXPONENTIAL ASYMPTOTICS IN THE SMALL PARAMETER EXIT PROBLEM

MAKOTO SUGIURA

1. Introduction

Let \mathcal{M} be a *d*-dimensional Riemannian manifold of class C^{∞} with Riemannian metric $g = (g_{ij})$ and let D be a connected domain in \mathcal{M} having a non-empty smooth boundary ∂D and a compact closure \overline{D} . Suppose that $b^{\varepsilon} \in \mathfrak{X}(\mathcal{M}) = \{C^{\infty}\text{-vector fields on } \mathcal{M}\}, \varepsilon > 0$, are given and that $\{b^{\varepsilon}\}$ converges uniformly to $b \in \mathfrak{X}(\mathcal{M})$ on D' as $\varepsilon \downarrow 0$ for some neighborhood D' of D. Consider the diffusion process (x_t^{ε}, P_x) on D' with a small parameter $\varepsilon > 0$ generated by

(1.1)
$$\mathscr{L}^{\varepsilon} = \frac{\varepsilon^2}{2} \varDelta + b^{\varepsilon},$$

where Δ is the Laplace-Beltrami operator on \mathcal{M} . Uniqueness of the process requires some boundary condition on $\partial D'$. However boundary conditions are not mentioned since the process is considered only before the time when it leaves a small neighborhood of \overline{D} . In this paper, we shall study the asymptotic behavior of the expectation of the first exit time τ^{ε} from the domain D; i.e.,

$$\tau^{\varepsilon} = \inf\{t > 0 ; x_t^{\varepsilon} \notin D\},\$$

under the following assumptions:

- (A₁) (gradient condition) there exists a potential function $U \in C^{\infty}(\bar{D})$ such that $b = -\frac{1}{2} \operatorname{grad} U \operatorname{on} \bar{D};$
- (A_2) the set of critical points $\mathscr{C} = \{x \in D ; \text{grad } U(x) = 0\}$ consists of finite number of connected components K_1, \ldots, K_l (each of which is called compactum) such that, for arbitrary two points $x, y \in K_l$, there is an

Received July 12, 1993.

Revised June 23, 1995.