K. Kojo Nagoya Math. J. Vol. 150 (1998), 177–196

ON THE DETERMINISM OF THE DISTRIBUTIONS OF MULTIPLE MARKOV NON-GAUSSIAN SYMMETRIC STABLE PROCESSES

KATSUYA KOJO

Abstract. Consider a non-Gaussian $S\alpha S$ process $X = \{X(t); t \in T\}$ which is expressed as a canonical representation $X(t) = \int_{u \leq t, u \in T} F(t, u) dZ(u), t \in T$, and is continuous in probability. If X is n-ple Markov, then X has determinism of dimension n + 1. That is, any $S\alpha S$ process $\tilde{X} = \{\tilde{X}(t); t \in T\}$ having the same (n + 1)-dimensional distributions with X is identical in law with X.

§1. Introdution

In this paper we consider the determinism of the distribution of an $S\alpha S$ (= symmetric α -stable) random field ($0 < \alpha \leq 2$) in the following sense.

DEFINITION. We say that an $S\alpha S$ random field $X = \{X(s); s \in S\}$ has determinism of dimension n if any $S\alpha S$ random field $\tilde{X} = \{\tilde{X}(s); s \in S\}$ having the same n-dimensional distributions with X is identical in law with X.

In this definition, "X and \tilde{X} have the same *n*-dimensional distributions" means that $(X(s_1), X(s_2), \dots, X(s_n))$ and $(\tilde{X}(s_1), \tilde{X}(s_2), \dots, \tilde{X}(s_n))$ have a common distribution for any choice of distinct $s_1, s_2, \dots, s_n \in S$. "X and \tilde{X} are identical in law" means that they have the same finite-dimensional distributions of all dimensions. Obviously, if X has determinism of dimension n, then X has determinism of dimension m for m > n. A centered Gaussian random field is symmetric stable with the index $\alpha = 2$ and has determinism of dimension 2 because any finite-dimensional distribution is expressed by its covariance function. On the other hand, it is not easy to answer a question whether a particular non-Gaussian $S\alpha S$ random field $(0 < \alpha < 2)$ has determinism of a given dimension or not. However, the determinism of some non-Gaussian $S\alpha S$ random fields has been studied.

Received October 14, 1996.