S. Cho Nagoya Math. J. Vol. 152 (1998), 97–129

EXTENSION OF CR STRUCTURES ON THREE DIMENSIONAL PSEUDOCONVEX CR MANIFOLDS

SANGHYUN CHO¹

Abstract. Let \overline{M} be a smoothly bounded orientable pseudoconvex CR manifold of finite type and $dim_{\mathbb{R}}M = 3$. Then we extend the given CR structure on M to an integrable almost complex structure on S_g^+ which is the concave side of M and $M \subset bS_g^+$.

§1. Introduction

Let \widetilde{M} be a smooth orientable manifold of dimension 2n-1 and let $\overline{M} \subset \widetilde{M}$ be a smoothly bounded CR manifold with a given CR structure S of dimension n-1. Since \widetilde{M} is orientable, there are smooth real nonvanishing 1-form η and smooth real vector field X_0 on \widetilde{M} so that $\eta(X) = 0$ for all $X \in S$ and $\eta(X_0) = 1$. We define the Levi form of S on \overline{M} by $i\eta([X', \overline{X''}])$.

In [4], Catlin has considered an extension problem of a given CR structure on M to an integrable almost complex structure on a 2n-dimensional manifold Ω with boundary so that the extension is smooth up to the boundary and so M lies in $b\Omega$. Under certain conditions on the Levi form (cf., [4, Theorem 1.1, Theorem 1.3]), this leads to a solution of the Kuranishi problem [1, 9, 13], which is to show that an abstract CR manifold can be locally embedded in \mathbb{C}^n .

In this paper, we consider an extension problem of a given CR structure on M when M is a pseudoconvex CR manifold of finite type and $\dim_{\mathbb{R}} M =$ 3. For a given positive continuous function g on M, where g = 0 on bM, we define

$$S_q^+ = \{ (x,t) \in M \times [0,\infty); \ 0 \le t \le g(x) \}.$$

Then our main result is the following theorem:

THEOREM 1.1. Let $\overline{M} \subset \widetilde{M}$ be a smoothly bounded orientable pseudoconvex CR manifold of finite type with given CR structure S on M and

Received August 1, 1997.

¹Partially supported by Non directed research fund, Korea research foundation 95–97, and by GARC-KOSEF, 1997