ON STANDARD L-FUNCTIONS
 ATTACHED TO AUTOMORPHIC FORMS ON DEFINITE ORTHOGONAL GROUPS

ATSUSHI MURASE and TAKASHI SUGANO

Abstract

We show an explicit functional equation of the standard L-function associated with an automorphic form on a definite orthogonal group over a totally real algebraic number field. This is a completion and a generalization of our previous paper, in which we constructed standard L-functions by using Rankin-Selberg convolution and the theory of Shintani functions under certain technical conditions. In this article we remove these conditions. Furthermore we show that the L-function of f has a pole at $s=m / 2$ if and only if f is a constant function.

Introduction

The purpose of this paper is to prove a meromorphic continuation and a functional equation of the standard L-function attached to an auotomorphic form on a definite orthogonal group. In our previous paper [4], we have proposed an approach to construct standard L-functions associated with automorphic forms on classical groups. In particular, we proved an explicit functional equation of the standard L-function in the case of definite orthogonal groups over \mathbf{Q} under certain conditions. In this paper, removing those technical conditions, we obtain a satisfactory result for the functional equation of the standard L-function.

To be more precise, let k be a totally real algebraic number field with maximal order \mathfrak{o}_{k}. Let $S \in M_{m}\left(\mathfrak{o}_{k}\right)$ be an even integral (totally) positive definite symmetric matrix of rank $m \geq 2$ and assume that \mathfrak{o}_{k}^{m} is a maximal \mathfrak{o}_{k}-integral lattice with respect to S. We denote by G the orthogonal group of S. For each nonarchimedean place \mathfrak{p}, let $K_{\mathfrak{p}}^{*}=\left\{g \in G_{\mathfrak{p}} \mid(g-1) S^{-1} \in\right.$ $\left.M_{m}\left(\mathfrak{o}_{k, \mathfrak{p}}\right)\right\}$, where $G_{\mathfrak{p}}$ is the \mathfrak{p}-adic completion of G. Clearly $K_{\mathfrak{p}}^{*}$ is a normal subgroup of a maximal open compact subgroup $K_{\mathfrak{p}}=G_{\mathfrak{p}} \cap G L_{m}\left(\mathfrak{o}_{k, \mathfrak{p}}\right)$. We consider the space $\mathfrak{S}\left(K_{f}^{*}\right)$ of left G_{k} and right $G_{\infty} \prod_{\mathfrak{p}<\infty} K_{\mathfrak{p}}^{*}$ invariant functions on the adelized group G_{A} of G, where G_{∞} means the direct product of

[^0]
[^0]: Received February 25, 1995.

