NOTE ON SUBDIRECT SUMS OF RINGS

MASAYOSHI NAGATA

In my previous paper "On the theory of semi-local rings,"¹⁾ we saw that if a semi-local ring R with maximal ideals p_1, \ldots, p_h is a subdirect sum of local rings $R_{[p_i]}$," then R is the direct sum of $R_{[p_i]}$ (proposition 15, $(slr)^{1}$) and that a complete semi-local ring is a direct sum of complete local rings (Remark to proposition 5, (slr)).

The main purpose of the present note is to prove two kinds of generalization (also for non-commutative case) of the first assertion mentioned above (Theorems 2 and 3). We first introduce in §1 the concept of *n*-rings and then we define the concepts of semi-local rings, local rings and so on; it is proved here that a commutative (semi-) local ring is a (semi-) local ring in the sense of (slr). It is also remarked that the assumption in Proposition 15, (slr), is a necessary and sufficient condition in order that a commutative semi-local ring is a direct sum of local rings. In §2, we prove our main theorems. In §3, we prove a generalization of the second assertion mentioned above for noncommutative case; in §4 we study rings which are subdirect sums of (a finite number of) *n*-rings.

1. Definitions and remarks to commutative case

DEFINITION 1. A ring³ R is called an *n*-ring if $R^2 = R$ and if for any proper ideal⁴ \mathfrak{a} in R there exists a maximal ideal⁵ containing \mathfrak{a} .

DEFINITION 2. A quasi-semi-local ring is a non-zero n-ring which contains only a finite number of maximal ideals. A quasi-local ring is a non-zero n-ring which contains only one maximal ideal.

DEFINITION 3. A quasi-semi-local ring R with maximal ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_h$ is called a semi-local ring if $\bigcap_{i,n} \mathfrak{p}_i^n = (0)$. In this case we introduce a topology in R by taking $\{\bigcap_{i=1}^h \mathfrak{p}_i^n; n = 1, \ldots, k, \ldots\}$ as a system of neighbour-

Received Sept. 4, 1950.

¹⁾ To appear in Proc. Jap. Acad. and will be referred as (slr) in the present note.

²⁾ This notation is same as in (slr); this denotes the topological quotients ring of \mathfrak{p}_i with respect to R: See Chapter I, (slr).

³⁾ A ring means an associative ring.

⁴⁾ An ideal means a two-sided ideal.

⁵⁾ Since $R^2 = R$, any maximal ideal is prime (we say an ideal \mathfrak{p} in a ring R is maximal if $R \neq \mathfrak{p}$ and if there exists no ideal \mathfrak{a} such as $R \supset \mathfrak{a} \supset \mathfrak{p}$).