ON SOME PROPERTIES OF LOCALLY COMPACT GROUPS WITH NO SMALL SUBGROUP

MORIKUNI GOTÔ and HIDEHIKO YAMABE

1. Let G be a locally compact group. Under a neighbourhood U we mean a symmetric (i.e. $U = U^{-1}$) neighbourhood of the identity e, with the compact closure \overline{U} . If there exists a neighbourhood U containing no subgroup other than the identity group, we say that G has no small subgroup. Now G has been called to have property (S) if

(S) for every $x \neq e$ in a sufficiently small neighbourhood U there exists an integer n so that $x^{2^n} \notin U^{(1)}$

If G has property (S), G is obviously with no small subgroup. Conversely we have

THEOREM 1. A locally compact group has property (S) if it has no small subgroup.

Proof. Let G be a locally compact group and V a neighbourhood with closure having no subgroup other than the identity group. Let W be a neighbourhood such as $W^2 \subset V$.

Suppose that the theorem is not true. Then there exist sequences $\{U_n\}$ and $\{x_n\}$ of neighbourhoods and elements such that

$$.. \supset U_n \supset U_{n+1} \supset ...,$$

$$\cap U_n = e,$$

$$U_n \supseteq x_n^{2^m}, \quad x_n \neq e, \quad m = 0, 1, 2, ...,$$

Because \overline{V} has no non-trivial subgroup there exists j_n such that

$$x_n \in W, \ldots, x_n^{j_n-1} \in W, x_n^{j_n} \notin W,$$

for every *n*. Then the inequality $2^{m_n-1} < j_n \leq 2^{m_n}$ determines a unique integer m_n . It is to be remarked that if $1 \leq s_n \leq 2^{m_n}$, then $x_n^{s_n} \in W^2 \subset V$. In particular $x_n^{j_n}$ is contained in *V*. Hence we can choose a subsequence $\{x_n\}$ of $\{x_n\}$ such that $\lim x_n^{j_n'}$ exists. Then the fact that $x_{n'}^{j_n'} \notin W$ implies that

Received Nov. 15, 1950.

¹⁾ See Kuranishi [4].