NOTE ON p-GROUPS

NOBORU ITÔ

In connection with the class field theory a problem concerning p-groups was proposed by W. Magnus ${ }^{11}$: Is there any infinite tower of p-groups G_{1}, G_{2}, \ldots, G_{n}, G_{n+1}, \ldots such that G_{I} is abelian and each G_{n} is isomorphic to $G_{n+1} / \theta_{n}\left(G_{n+1}\right)$, $\theta_{n}\left(G_{n+1}\right) \neq 1, n=1,2, \ldots$, where $\theta_{n}\left(G_{n+1}\right)$ denotes the n-th commutator subgroup of G_{n+1} ? The present note ${ }^{2)}$ is, firstly, to construct indeed such a tower, to settle the problem, and also to refine an inequality for p-groups of P. Hall. ${ }^{3)}$

1. Let p be an odd prime number and let M_{i} be the principal congruence subgroup of "stufe" (p^{i}) of the homogeneous modular group in the rational p adic number field R_{p}, that is, the totality of matrices $\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$ such that a_{11}, $a_{12}, a_{21}, a_{22} \in R_{p}, a_{11} \equiv a_{22} \equiv 1\left(\bmod . p^{i}\right)$, and $a_{12} \equiv a_{21} \equiv 0\left(\bmod . p^{i}\right)$. Let $\theta_{r}\left(M_{i}\right)$ denote the r-th commutator subgroup of M_{i}.

Lemma 1. $\theta_{s}\left(M_{i}\right) \subseteq M_{2 s}$ for $s=0,1,2, \ldots$
Proof. The case $s=0$ is trivial. Assume $s>0$ and that $\theta_{s-1}\left(M_{I}\right) \leqq M_{2 s-1}$. Then $\theta_{s}\left(M_{I}\right) \leqq \theta_{1}\left(M_{2 s-I}\right)$. We shall prove $\theta_{1}\left(M_{2 s-I}\right) \leqq M_{2 s}$. Let $A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right), B=\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right)$ be any two elements of $M_{2 s-1}$. Then $A^{-1} B^{-1} A B=|A|^{-1} \cdot|B|^{-I}$

$$
\begin{gathered}
\left(a_{22} b_{22}+a_{12} b_{21}\right)\left(a_{11} b_{11}+a_{12} b_{21}\right)-\left(a_{22} b_{12}+a_{12} b_{11}\right)\left(a_{21} b_{11}+a_{22} b_{21}\right) \\
-\left(a_{21} b_{22}+a_{11} b_{21}\right)\left(a_{11} b_{11}+a_{12} b_{21}\right)+\left(a_{21} b_{12}+a_{11} b_{11}\right)\left(a_{21} b_{11}+a_{22} b_{21}\right) \\
\left(a_{22} b_{22}+a_{12} b_{21}\right)\left(a_{11} b_{12}+a_{12} b_{22}\right)-\left(a_{22} b_{12}+a_{12} b_{11}\right)\left(a_{21} b_{12}+a_{22} b_{22}\right) \\
\left.-\left(a_{21} b_{22}+a_{11} b_{21}\right)\left(a_{11} b_{12}+a_{12} b_{22}\right)+\left(a_{21} b_{12}+a_{11} b_{11}\right)\left(a_{21} b_{12}+a_{22} b_{22}\right)\right)
\end{gathered}
$$

where $|A|,|B|$ are the determinants of A, B respectively, and therefore $|A|^{-1} a_{11} a_{22}$ $\equiv|B|^{-1} b_{11} b_{22} \equiv 1\left(\bmod . p^{2^{s}}\right) . \quad$ Now $a_{11} \equiv a_{22} \equiv b_{11} \equiv b_{22} \equiv 1\left(\bmod . p^{2 s-1}\right), \quad a_{12} \equiv a_{21}$ $\equiv b_{12} \equiv b_{21} \equiv 0\left(\bmod . p^{2-1}\right)$. Then (1,1)- and (2,2)-elements of $A^{-1} B^{-1} A B$ are obviously $\equiv 1$ (mod. $\left.p^{p^{s}}\right)$. Since

$$
\begin{array}{r}
a_{22} b_{29}\left(a_{11} b_{12}+a_{12} b_{22}\right)-\left(a_{22} b_{12}+a_{12} b_{11}\right) a_{22} b_{12}=a_{22} b_{22}\left\{b_{12}\left(a_{11}-a_{22}\right)+a_{12}\left(b_{22}-b_{11}\right)\right\}, \\
-\left(a_{21} b_{29}+a_{11} b_{21}\right) a_{11} b_{11}+a_{11} b_{11}\left(a_{21} b_{11}+a_{22} b_{21}\right)=a_{11} b_{11}\left\{a_{21}\left(b_{11}-b_{22}\right)+b_{21}\left(a_{22}-a_{11}\right)\right\},
\end{array}
$$

Received March 6, 1950.
${ }^{1)}$ W. Magnus, Beziehung zwishen Gruppen und Idealen in einem speziellen Ring, Math. Annalen 111 (1935).
2) An impulse was given to the present work by Dr. K. Iwasawa, through a communication by Mr. M. Suzuki.

