NOTE ON *p*-GROUPS

NOBORU ITÔ

In connection with the class field theory a problem concerning p-groups was proposed by W. Magnus¹: Is there any infinite tower of p-groups G_1, G_2, \ldots , G_n, G_{n+1}, \ldots such that G_l is abelian and each G_n is isomorphic to $G_{n+1}/\partial_n(G_{n+1})$, $\theta_n(G_{n+1}) \neq 1$, $n = 1, 2, \ldots$, where $\theta_n(G_{n+1})$ denotes the *n*-th commutator subgroup of G_{n+1} ? The present note² is, firstly, to construct indeed such a tower, to settle the problem, and also to refine an inequality for p-groups of P. Hall.³

1. Let p be an odd prime number and let M_i be the principal congruence subgroup of "stufe" (p^i) of the homogeneous modular group in the rational padic number field R_p , that is, the totality of matrices $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ such that a_{11} , $a_{12}, a_{21}, a_{22} \in R_p$, $a_{11} \equiv a_{22} \equiv 1 \pmod{p^i}$, and $a_{12} \equiv a_{21} \equiv 0 \pmod{p^i}$. Let $\theta_r(M_i)$ denote the r-th commutator subgroup of M_i .

LEMMA 1. $\theta_s(M_i) \subseteq M_{2^s}$ for s = 0, 1, 2, ...

Proof. The case s = 0 is trivial. Assume s > 0 and that $\theta_{s-I}(M_I) \leq M_{2s-1}$. Then $\theta_s(M_I) \leq \theta_1(M_{2s-I})$. We shall prove $\theta_1(M_{2s-I}) \leq M_{2s}$. Let $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$, $B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{32} \end{pmatrix}$ be any two elements of M_{2s-I} . Then $A^{-1}B^{-1}AB = |A|^{-I} \cdot |B|^{-I}$ $\begin{pmatrix} (a_{22}b_{22} + a_{12}b_{21})(a_{11}b_{11} + a_{12}b_{21}) - (a_{22}b_{12} + a_{12}b_{11})(a_{21}b_{11} + a_{22}b_{21}) \\ - (a_{21}b_{22} + a_{11}b_{21})(a_{11}b_{11} + a_{12}b_{22}) - (a_{22}b_{12} + a_{12}b_{11})(a_{21}b_{11} + a_{22}b_{21}) \\ (a_{22}b_{22} + a_{12}b_{21})(a_{11}b_{12} + a_{12}b_{22}) - (a_{22}b_{12} + a_{12}b_{11})(a_{21}b_{12} + a_{22}b_{22}) \\ - (a_{21}b_{22} + a_{11}b_{21})(a_{11}b_{12} + a_{12}b_{22}) - (a_{22}b_{12} + a_{12}b_{11})(a_{21}b_{12} + a_{22}b_{22}) \\ - (a_{21}b_{22} + a_{11}b_{21})(a_{11}b_{12} + a_{12}b_{22}) + (a_{21}b_{12} + a_{11}b_{11})(a_{21}b_{12} + a_{22}b_{22}) \end{pmatrix}$

where |A|, |B| are the determinants of A, B respectively, and therefore $|A|^{-I}a_{11}a_{22} \equiv |B|^{-1}b_{11}b_{22} \equiv 1 \pmod{p^{2^{s}-I}}$. Now $a_{11} \equiv a_{22} \equiv b_{11} \equiv b_{22} \equiv 1 \pmod{p^{2^{s-I}}}$, $a_{12} \equiv a_{21} \equiv b_{12} \equiv b_{21} \equiv 0 \pmod{p^{2^{s-I}}}$. Then (1, 1)- and (2, 2)-elements of $A^{-1}B^{-1}AB$ are obviously $\equiv 1 \pmod{p^{2^{s}}}$. Since

$$a_{22}b_{22}(a_{11}b_{12} + a_{12}b_{22}) - (a_{22}b_{12} + a_{12}b_{11})a_{22}b_{22} = a_{22}b_{22}\{b_{12}(a_{11} - a_{22}) + a_{12}(b_{22} - b_{11})\},\ - (a_{21}b_{22} + a_{11}b_{21})a_{11}b_{11} + a_{11}b_{11}(a_{21}b_{11} + a_{22}b_{21}) = a_{11}b_{11}\{a_{21}(b_{11} - b_{22}) + b_{21}(a_{22} - a_{11})\},\$$

Received March 6, 1950.

¹⁾ W. Magnus, Beziehung zwishen Gruppen und Idealen in einem speziellen Ring, Math. Annalen **111** (1935).

²⁾ An impulse was given to the present work by Dr. K. Iwasawa, through a communication by Mr. M. Suzuki.