NOTE ON p-GROUPS

NOBORU ITO

In connection with the class field theory a problem concerning p-groups was
proposed by W. Magnus?: Is there any infinite tower of p-groups G,,G.,. . .,
Gn, Gns1, . . . such that G; is abelian and each G,, is isomorphic to Guy:/04(Gns+1),
0,(Gns1) 1, n=1,2,..., where 60,(Gn+:) denotes the n-th commutator sub-
group of G,.:? The present note?® is, firstly, to construct indeed such a tower,
to settle the problem, and also to refine an inequality for p-groups of P. Hall.»

1. Let p be an odd prime number and let M; be the principal congruence
subgroup of “stufe” (#*) of the homogeneous modular group in the rational p-
adic number field Rp, that is, the totality of matrices (Z'; Z') such that ai,
Qy2, @21, 80 E Rp, a1 = ax =1 (mod. p°), and a;; = @z = 0 (mod. »). Let 4,(M;)
denote the 7-th commutator subgroup of Af;.

Lemma 1. 0,(M;) € M for s =0,1,2,. . ..

Proof. The case s =0 is trivial. Assume s >0 and that 8s-,(M;) = M_,.
Then 6s(M;) < 0,(Ms-1). We shall prove 6,(Ms_;) € M.

Let A= (a“ a”) , B= (Z” z’:) be any two elements of M,.;. Then
21 2.

Qg Qo2
A-'B-'AB = |A|-1.|B|-!
( (@asb2s + @19bor) (@1ibyy + Guobar) — (@o2bse + @1sbri) (@aibii + @oobar)
= (@ubes + @nbu) (@uby + @rebs) + (@b + @1ibu) (@ibis + G22b21)
(@22D22 + @robar) (@usbiz + @yobae) — (@osbiz + @iebyr) (@2ubiz + anbzc))

— (@a1bez + @ubey) (@nbiz + @ibsx) + (@2ibiz + anbu) (@bss + @zobse)
where |A|, |B| are the determinants of A, B respectively, and therefore |A|-7ana:
= |B|" b = 1 (mod. p%). Now ai = @ = by = b = 1 (mod. ), a2 = ax
= by = by = 0 (mod. 7). Then (1,1)- and (2, 2)-elements of A-'B~'AB are
obviously = 1 (mod. »*°). Since

a‘:EbiE(aubl? + @yabeg) — (aeebm + arzbu)aﬁzb;ﬂz = azzbaz{bxz(ﬂu - 022) + ayo(bee — bu) ),
— (@uber + anbn)anby + anbu(andy + @ubo) = andn{an (by « bx) + by (az — an)},
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