A THEOREM ON THE CLUSTER SETS OF PSEUDO-ANALYTIC FUNCTIONS

KIYOSHI NOSHIRO

1. Let D be an arbitrary connected domain and w = f(z) = u(x, y) + iv(x, y), z = x + iy, be an interior transformation in the sense of Stoïlow in D. Denote by γ a set, in D, such that D and the derived set γ' of γ have no point in common. We suppose that

(i) u_x, u_y, v_x, v_y exist and are continuous in $D^* = D - \gamma$;

(ii)
$$J(z) = \begin{vmatrix} u_x & u_y \\ v_x & v_y \end{vmatrix} > 0 \text{ at every point in } D^*;$$

(iii) the function q(z) defined as the ratio of the major and minor axes of an infinitesimal ellipse with centre f(z), into which an infinitesimal circle with centre at each point z of D^* is transformed by w = f(z), is bounded in D^* : $q(z) \leq A$.

f(z) is then called pseudo-meromorphic (A) in $D^{(1)}$

Next, suppose that w = f(z) is pseudo-meromorphic (A) in D. Let C be the boundary of D, E be a closed set of capacity²⁾ zero, included in C, and z_0 be a point in E. We can associate with z_0 three cluster sets $S_{z_0}^{(D)}$, $S_{z_0}^{(C)}$ and $S_{z_0}^{*(C)}$ as follows: $S_{z_0}^{(D)}$ is the set of all values α such that $\lim_{v \to \infty} f(z_v) = \alpha$ with a sequence $\{z_v\}$ of points tending to z_0 inside D. $S_{z_0}^{*(C)}$ is the intersection $\bigcap_r M_r$, where M_r denotes the closure of the union $\bigcup_{\zeta'} S_{\zeta'}^{(D)}$ for all ζ' belonging to the common part of C - E and $U(z_0, r)$: $|z - z_0| < r$. In the particular case when E consists of a single point z_0 , we denote $S_{z_0}^{*(C)}$ by $S_{z_0}^{(C)}$ for simplicity. Obviously $S_{z_0}^{(D)}$ and $S_{z_0}^{*(C)}$ are closed sets such that $S_{z_0}^{*(C)} \subset S_{z_0}^{(D)}$ and $S_{z_0}^{(D)}$ is always non-empty while $S_{z_0}^{*(C)}$ becomes empty if and only if there exists a positive number r such that C - Eand $U(z_0, r)$ have no point in common.

In the particular case where w = f(z) is single-valued meromorphic in D, the following theorems concerning the cluster sets $S_{z_0}^{(D)}$, $S_{z_0}^{(C)}$ and $S_{z_0}^{*(C)}$ are known:

Received February 20, 1950.

¹⁾ For the definition of pseudo-meromorphic functions, Cf. S. Kakutani: Applications to the theory of pseudo-regular functions to the type-problem of Riemann surfaces, Jap. Journ. of Math. Vol. 13 (1937), pp. 375-392. R. Nevanlinna: Eindeutige analytische Funktionen, Berlin, 1936, p. 343.

^{2) &}quot;Capacity" means logarithmic capacity in this note.