A BOUNDARY THEOREM FOR TSUJI FUNCTIONS

E. F. COLLINGWOOD

To Professor K. Noshiro on his sixtieth birthday

1. Introduction. Let D denote the unit disc |z| < 1, C the unit circle |z| = 1and C_r the circle |z| = r. Corresponding to any function w(z) meromorphic in D we denote by $w^*(z)$ the spherical derivative

$$w^*(z) = \frac{|w'(z)|}{1+|w(z)|^2}$$
.

We say that w(z) is a Tsuji function if the spherical length of the curve $w(C_r)$ is a bounded function in $0 \le r \le 1$, in other words, provided

(1)
$$\sup_{r \to 1} \int_0^{2\pi} w^* (re^{i\theta}) \, rd\theta < \infty \, .$$

A rectilinear segment S lying in D except for one endpoint $e^{i\theta}$ on C is called a segment of Julia for w, provided in each open triangle in D having one vertex at $e^{i\theta}$ and meeting S, the function w assumes all values on the Riemann sphere except possibly two. A point $e^{i\theta}$ is a Julia point for w provided each rectilinear segment lying in D except for one endpoint at $e^{i\theta}$ is a segment of Julia for w.

Corresponding to each θ and each α ($|\alpha| < \pi/2$), let $S(\theta, \alpha)$ be the segment that joins the points $e^{i\theta}$ and $(1 - e^{i\alpha} \cos \alpha) e^{i\theta}$; in other words, let $S(\theta, \alpha)$ denote the chord of the circle with diameter $[0, e^{i\theta}]$ that forms a directed angle α with $[0, e^{i\theta}]$ at $e^{i\theta}$. In case w(z) approaches a limit as $z \rightarrow e^{i\theta}$ on $S(\theta, \alpha)$, we denote this limit by $w(\theta, \alpha)$.

Further, let $L(\theta, \alpha)$ denote the spherical length of the image under the mapping w of $S(\theta, \alpha)$.

Tsuji [1] proved the following theorem.

For almost all θ , the radius $S(\theta, 0)$ is mapped on a rectifiable curve on the w-sphere so that a finite radial limit exists.

Received July 18, 1966.