GENERALIZATION OF LEVI-OKA'S THEOREM CONCERNING MEROMORPHIC FUNCTIONS

JOJI KAJIWARA and EIICHI SAKAI

Dedicated to Professor K. NOSHIRO on his sixtieth birthday

Introduction

As Fuks [3] stated, every domain of holomorphy or meromorphy over C^n is analytically convex in the sense of Hartogs. Oka [6] proved that every domain over C^n analytically convex in the sense of Hartogs is a domain of holomorphy. Therefore a domain of meromorphy over C^n coincides with a domain of holomorphy over C^n .

In the present paper we shall prove that the envelope of meromorphy of a domain (D, φ) over a Stein manifold S with respect to a family of meromorphic functions on D is p_7 -convex in the sense of Docquier-Grauert [2] and, therefore, is a Stein manifold. Especially a domain of meromorphy over S coincides with a domain of holomorphy over S.

A complex manifold M is called of *weak* (or *strong*) Poincaré type if for any meromorphic function f on M there exist holomorphic functions g and hon M such that f = g/h on M (and that g and h are coprime at each point of M). From Siegel [8] any complex manifold of Cousin II type is of strong Poincaré type and from Hitotumatu-Kôta [4] any Stein manifold is of weak Poincaré type.

Let (D, φ) be a domain over a Stein manifold and f be a meromorphic function on D. There exists a meromorphic function \tilde{f} on the domain $(\tilde{\lambda}_f, \tilde{D}_f, \tilde{\varphi}_f)$ of meromorphy of f such that $f = \tilde{f} \circ \tilde{\lambda}_f$. As \tilde{D}_f is a Stein manifold which is of weak Poincaré type, there exist holomorphic functions \tilde{g} and \tilde{h} on \tilde{D}_f such that $\tilde{f} = \tilde{g}/\tilde{h}$ on \tilde{D}_f . Then holomorphic functions $g = \tilde{g} \circ \tilde{\lambda}_f$ and $h = \tilde{h} \circ \tilde{\lambda}_f$ on Dsatisfies f = g/h on D. This means that any domain over a Stein manifold is of weak Poincaré type.

Received March 19, 1966.

Revised April 11, 1966.