ON THE CLASS NUMBER OF A RELATIVELY CYCLIC NUMBER FIELD

HIDEO YOKOI

To Professor KIYOSHI NOSHIRO on the occasion of his 60th birthday

Introduction

Let *l* be a rational prime. For each $n \ge 0$, denote by ζ_{l^n} a primitive l^n -th root of unity and by $\mathbf{Q}(\zeta_{l^n})$ the cyclotomic field obtained by adjoining ζ_{l^n} to the rational field **Q**. Then a theorem which was proved by H. Weber¹⁾ is well known:

THEOREM (H. WEBER). The class number of $Q(\zeta_{2\nu})$ is odd.

As a generalization of this theorem of Weber, Ph. Furtwängler²) gave:

THEOREM (PH. FURTWÄNGLER). The class number of $\mathbf{Q}(\zeta_{l^{\nu}})$ is divisible by the prime l if and only if the class number of $\mathbf{Q}(\zeta_{l})$ is divisible by l.

Moreover, Ph. Furtwängler³) obtained

THEOREM (PH. FURTWÄNGLER). Let F and K be two subfields of $Q(\zeta_{I^{\nu}})$. If F is contained in K, then the class number of K is divisible by the class number of F.

Afterwards, K. Iwasawa4) generalized these theorems, and got

THEOREM (K. IWASAWA)⁵). Let F be an algebraic number field, and let K be a finite Galois extension of F. Then we have the following facts:

(1) If there exists a prime divisor P of F which is fully ramified in the extension K/F, then the class number of K is divisible by the class number of F.

(II) If, furthermore, K/F is a cyclic extension of prime power degree l' and

Received February 16, 1966.

¹⁾ Cf. H. Weber [21].

²⁾ Cf. Ph. Furtwängler [7].

³⁾ Cf. Ph. Furtwängler [6].

⁴⁾ Cf. K. Iwasawa [12].

⁵⁾ This theorem is often referred to e.g. in S.-N.Kuroda [16], K. Iwasawa [14] etc.