A REMARK ON DIFFERENTIABLE STRUCTURES ON REAL PROJECTIVE (2n-1)-SPACES

KENICHI SHIRAIWA

Dedicated to the memory of Professor TADASI NAKAYAMA

The main objective of this paper is to study the action of the group of differentiable structures Γ_{2n-1} on the (2n-1)-sphere S^{2n-1} on the diffeomorphism classes on the real projective (2n-1)-space P^{2n-1} by connected sum. This is done by considering universal covering spaces of the connected sum $P^{2n-1} \notin \Sigma$, where Σ is an exotic (2n-1)-sphere.

Throughout this paper all the manifolds considered are oriented, compact, and connected. Also the word *differetiable* is meant C^{∞} -differentiable.

1. Let M, N be *n*-dimensional differentiable manifolds. If there exists an orientation preserving diffeomorphism of M onto N, then we shall denote it by $M \approx N$. The manifold M with orientation reversed is denoted by -M.

Let $M_1 \notin M_2$ be the connected sum of two *n*-manifolds M_1 and M_2 . It is known that the connected sum operation is associative and commutative up to orientation preserving diffeomorphism. The sphere S^n serves as identity element (Cf. J. Milnor [2], M. Kervaire- J. Milnor [1]).

Let \sum be a smooth combinatorial *n*-sphere, which is called an exotic sphere. Then $\sum \# (-\sum) \approx S^n$. Thus the set of all the orientation preserving diffeomorphism classes of the exotic spheres forms a group under connected sum, which is denoted by Γ_n . We shall denote the class of \sum by $\{\sum\}$.

Let *M* be a differentiable *n*-manifold. Let Σ be an exotic *n*-sphere such that $M \notin \Sigma \approx M$. Let $\Delta(M)$ be the subset of Γ_n consisting of the classes of such Σ .

PROPOSITION 1. $\Delta(M)$ is a subgroup of Γ_n , and $M \notin \sum_1 \approx M \notin \sum_2$, for exotic spheres \sum_1, \sum_2 , if and only if $\{\sum_1\} - \{\sum_2\} \in \Delta(M)$.

Proof. Let $\{\sum_{1}\}, \{\sum_{2}\} \in \Delta(M)$. Then

Received June 28, 1965.