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It is known classically that abelian varieties of dimension one over the field

of complex numbers may be expressed by non-singular Hesse's canonical cubic

plane curves, X\ + X\ + Xί.ι - 6 γX^XχX-ι = 0. The purpose of the present paper

is to generalize this idea to higher dimensional case.

Let Z(3) be the residue group of the additive group Z of integers modulo

3Z and Z(3)r be the r-times direct sum of Z(3). We mean by Z(3)+ r the subset

of Z(3)r consisting of all the elements {at,. . . , a?) such that at = 0 or 1

(l<i<r). Then, roughly speaking, our result may be expressed as follows' a

generic abelian variety with a positive divisor U such that /(£/) = l υ is defined

by relations of the following type

(*) AYa+bY-a+bYb— Σ Ta

V ) Aila+bY-a + b~~ 2-Δ Pa,
c+&Z(3)+ r

§ 1. Formal theta functions of level n and the scheme

A(r,n) associated with them

1.1. We mean by 2 and Q the ring of intergers and the field of rational

numbers. We mean by Z r the r-times direct sum of the Z-module Z and by Qr

the r-times direct sum of the Q-module Q. Let {W(i\oc)9 W(j,l; β)\l<.i,j, l<r;

αf,β£Q>bea system of indeterminates on which rational numbers operate such

that W(i;a)r=W{i;ar), W{j\l; β)Ύ = W(j,l; βγ). We denote by / the ideal

i n t h e p o l y n o m i a l r i n g Z[_{W{i\ct), W(f, llβ)Ώ g e n e r a t e d b y

W(i;0)-l9 W(j, I;0)-l, Wit na) - W(i, a) W(i\a),

W(j, l nβ)- W(j, /, β) W(j, I β)
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!> l(U) means the rank of the module of the multiples of — U.
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