AN EXISTENCE THEOREM IN POTENTIAL THEORY

MASANORI KISHI

Dedicated to the memory of Professor TADASI NAKAYAMA

1. Concerning a positive lower semicontinuous kernel G on a locally compact Hausdorff space X the following existence theorem was obtained in [3].

THEOREM A. Assume that the adjoint kernel \check{G} satisfies the continuity principle. Then for any separable compact subset K of X and any positive upper semicontinuous function u(x) on K, there exists a positive measure μ , supported by K, such that

> $G\mu(\mathbf{x}) \ge u(\mathbf{x})$ G-p.p.p. on K, $G\mu(\mathbf{x}) \le u(\mathbf{x})$ on S μ , the support of μ .

Nakai [4] proved the theorem without assuming the separability of K. Using Kakutani's fixed-point theorem he simplified a part of the proof. But he needed prudent considerations on topology in order to avoid the separability. In this paper we shall give a simpler proof of the theorem without assuming the separability. We shall deal with a slightly more general kernel and use Glicksberg-Fan's fixed-point theorem.

2. A lower semicontinuous function G(x, y) on $X \times X$ with $0 \le G(x, y) \le +\infty$ is called a non-negative l.s.c. kernel on X. The kernel G, defined by $\check{G}(x, y) = G(y, x)$, is called the adjoint kernel of G. The potential $G\mu(x)$ of a positive measure μ is defined by $G\mu(x) = \int G(x, y) d\mu(y)$. The adjoint potential $\check{G}\mu(x)$ is similarly defined. The adjoint kernel \check{G} is said to satisfy the continuity principle when finite continuous is every adjoint potential $\check{G}\mu$ of a positive measure μ with compact support which is finite continuous as a function on $S\mu$.

3. We shall prove

Received April 12, 1965.