INVOLUTORY AUTOMORPHISMS OF GROUPS OF ODD ORDER AND THEIR FIXED POINT GROUPS

L. G. KOVÁCS AND G. E. WALL

In Memoriam Tadasi Nakayama

1. Introduction. Let G be a finite group of odd order with an automorphism θ of order 2. (We use without further reference the fact, established by W. Feit and J. G. Thompson, that all groups of odd order are soluble.) Let G_{θ} denote the subgroup of G formed by the elements fixed under θ . It is an elementary result that if $G_{\theta} = 1$ then G is abelian. But if we merely postulate that G_{θ} be cyclic, the structure of G may be considerably more complicated—indeed G may have arbitrarily large soluble length. E.g. let p be an odd prime and let t denote the largest odd divisor of p-1. Let G be the group formed by the matrices $A = \begin{pmatrix} u+pa & pb \\ pc & v+pd \end{pmatrix}$ of determinant 1, where a, b, c, d, u, v lie in the ring of residue classes (mod p^{k+1}) and $uv \equiv u^t \equiv 1 \pmod{p}$. Let θ be the contragradient automorphism $A \rightarrow (A^{-1})^T$. Then G_{θ} is cyclic of order p^k . G itself has order $p^{3k}t$ and soluble length m or m+1, where m is the least integer such that $2^m \geq k+1$. The Fitting subgroup of G is a p-group of order p^{3k} , exponent p^k , and class k.

The theorem proved in this note deals with the case where G_{θ} is nilpotent. It belongs to the same circle of ideas as the recent results of J. G. Thompson [5], though it is much more special. Let F(H) denote the Fitting subgroup of a group H and $1 = F_0(H) \le F_1(H) \le \cdots$ the ascending Fitting series of H, defined inductively by $F_{i+1}(H)/F_i(H) = F(G/F_i(H))$.

Theorem Let G be a group of odd order and θ an automorphism of G of order 2 such that G_0 is nilpotent. Suppose either (i) $G = F_2(G)$ or (ii) the Sylow subgroups of G_0 are regular. Then G/F(G) is contained in the variety V generated by G_0 together with the cyclic subgroups of G/F(G).

The following particular case may serve as an illustration of the Theorem:

Received March, 29, 1965.