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1. Resolutive compactification and harmonic measures. Let R be an open

Riemann surface. A compact Hausdorff space /?* containing R as its dense

subspace is called a compactification of R and the compact set Δ = R* - R is

called an ideal boundary of R. Hereafter we always assume that R does not

belong to the class Oo. Given a real-valued function / on Δ, we denote by

<f>f'E* (resp. ΨR'R*) the totality of lower bounded superharmonic (resp. upper

bounded subharmonic) functions s on R satisfying

lim inf sgj-^ s(p) >/(£*) (resp. lim supΛ3p-*p* s(p)<,f(p*))

for any point p* in Δ. If these two families are not empty, then

* s e f / ^ ) and Ef'E*(p) = sup (sip) s^ΨfRΊ

are harmonic functions on R and HfR*>HfR* on R. If these two functions

coincide with each other on R, then we denote by HR'R* this common function

and call f resolutive with respect to /?* (or J ) . We denote by C(Δ) the totality

of bounded real valued continuous functions on Δ. If any function in C(Δ) is

resolutive with respect to J, then following Constantinescu and Cornea [1] we

say that i?* is a resolutive compact iήc at ion of R. Important examples of resolu-

tive compactifications are Wiener's, Martin's Royden's, Kuramochi's and

Kerekjartό-Stoilow's compactifications (see [1]). Hereafter we always consider

the resolutive compactification R* of R.

Fix a point p in R. It is easy to see that f-*HψR\p) is a positive linear

functional on C(Δ) and so by Riesz-Markoff-Kakutani's theorem, there exists a

positive regular Borel measure μp on Δ such that
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