AN ACTION OF THE SYMPLECTIC MODULAR GROUP

LOUIS SOLOMON*

To the memory of TADASI NAKAYAMA

1. Let V be a free Z-module of rank 2n. Let $G = \operatorname{Sp}(2n, \mathbb{Z})$ be the symplectic modular group and let \emptyset be the non-singular alternating bilinear form on V left invariant by G. Let $p \in \mathbb{Z}$ be a prime and let X be the set of all endomorphisms ξ of V such that

$\varphi(\xi x, \xi y) = p\varphi(x, y)$

for all $x, y \in V$. In the theory of transformation of theta functions [3] one encounters the natural action of G on X by left multiplication. The number of G orbits is known to be finite and the point of this note is a proof of the following

THEOREM. The number of orbits of X under G is $\prod_{i=1}^{n} (1 + p^{i})$

The case n = 2 is due to Hermite [2] and the case n = 3 to Weber [4] who compute explicit sets of representatives for the orbits in these cases. The idea in the present argument is to reduce the problem to a question about the finite symplectic group $\operatorname{Sp}(2n, \mathbf{F}_p)$. In the new situation Witt's theorem is available for counting purposes. The number $\prod_{i=1}^{n} (1+p^i)$ is the number of maximal totally isotropic subspaces of a 2n dimensional symplectic space over \mathbf{F}_p .

2. Let V be a free Z-module of rank 2n. Let $\emptyset: V \times V \to Z$ be a nonsingular alternating bilinear form on V. We assume that V has a basis v_1 , ..., v_{2n} such that the matrix of $\emptyset(v_i, v_j)$ is

$$J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$$

where I is the identity matrix of degree n. We call v_1, \ldots, v_{2n} a symplectic basis for V. The symplectic modular group Sp(2n, Z) consists of all automor-

Received March 22, 1965.

 $[\]ast$ This work was supported in part by the National Science Foundation under grant GP 1452.