IMBEDDING A REGULAR RING IN A REGULAR RING WITH IDENTITY

NENOSUKE FUNAYAMA

Dedicated to the memory of Professor Tadasi Nakayama

In [1] L. Fuchs and I. Halperin have proved that a regular ring R is isomorphic to a two-sided ideal of a regular ring with identity. ([1] Theorem 1). Their method is to imbed the regular ring R in the ring of all pairs (a, ρ) with $a \in R$ and ρ from a suitable commutative regular ring S with identity such that R is an algebra over S. Thus S may be seen as the ring of R - R endomorphisms of the additive group of R. The following question is naturally raised: Is it true that the ring of all R - R endomorphisms of a rugular ring is a commutative regular ring? The main purpose of this paper is to answer this question affirmatively. (Theorem 1). After established this theorem we can follow the method in [1] to solve the problem in the title.

1. Endorphisms of R^+ .

Let R^+ be the additive group of a given ring R with R as left and right operator domains, and let \widetilde{R} be the ring of all endomorphisms of R^+ , that is the ring of all R-R endomorphisms of the additive group R. \widetilde{R} has the identity $\overline{1}$ which is the identity mapping of R^+ . Also let us denote by $\overline{0}$, \overline{n} and \overline{c} respectively the zero endomorphism, $\overline{n}: a \to na$, where a is an element in R and n is an integer, $\overline{c}: a \to ac$, where c is an element in the center C of R.

Lemma 1. If R has the identity 1, then \tilde{R} is isomorphic to the center C of R.

Proof. Let ρ be an element of \widetilde{R} . Then for any element a in R we have $a\rho = (a \ 1)\rho = a(1 \ \rho)$ and $a\rho = (1 \ a)\rho = (1 \ \rho)a$. Thus $c = 1 \ \rho$ is in the center C of R and $a\rho = ac = ca$. Conversely let c be an element in C, then \overline{c} : $a \to ac$ is an endomorphism of R^+ . $\rho \to 1 \ \rho$ sets up a ring isomorphism between \widetilde{R} and C.

LEMMA 2. If $R^2 = R$, then \tilde{R} is commutative.

Received March 22, 1965.