UNIQUE CONTINUATION FOR PARABOLIC EQUATIONS OF HIGHER ORDER

LU-SAN CHEN and TADASHI KURODA

1. Let $x = (x_1, \ldots, x_n)$ be a point in the *n*-dimensional Euclidean space and let \mathscr{D} be the unit sphere $|x| = \left(\sum_{i=1}^n x_i^2\right)^{1/2} < 1$. In the (n+1)-dimensional Euclidean space with coordinate (x, t), we put

$$\mathcal{Q} = \mathcal{Q}_{T',T''} = \{(x, t) ; x \in \mathscr{D}, T' \leq t \leq T''\}$$

and

$$S = S_{T',T''} = \{(x, t) ; x \in \mathscr{D}, T' \leq t \leq T''\},$$

where $\hat{\mathscr{D}}$ denotes the boundary of \mathscr{D} . We also use the following notation:

$$\mathscr{D}_T = \{ (x, t) ; x \in \mathscr{D}, t = T \}.$$

For real-valued functions $h_1 = h_1(x, t)$ and $h_2 = h_2(x, t)$ square integrable in \mathcal{Q} , we put

$$(h_1, h_2) = (h_1, h_2)_{\Omega} = \iint_{\Omega} h_1 h_2 \, dx dx$$

and

$$||h_1||^2 = ||h_1||_{\Omega}^2 = \iint_{\Omega} h_1^2 \, dx \, dt.$$

We denote by \mathfrak{V} the family of all the functions $v = v(x, t) \in C^{2s}(\mathcal{Q} \cup S)$ which vanishes on $\mathscr{D}_{T'}$ and satisfies $D_x^{\alpha}v = 0$ ($|\alpha| \leq s-1$) on S. Here $C^{2s}(\mathcal{Q} \cup S)$ is the class of all functions 2s-times continuously differentiable in (a neighbourhood of) $\mathcal{Q} \cup S$ and $D_x^{\alpha}v$ is the derivative

$$\frac{\partial^{|\alpha|} v}{\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}}$$

of v for a multi-index $\alpha = (\alpha_1, \ldots, \alpha_n)$ $(\alpha_i \ge 0)$ of integers with length $|\alpha| = \alpha_1 + \cdots + \alpha_n$.

2. Consider a differential operator

Received May 19, 1965.