RANK ELEMENT OF A PROJECTIVE MODULE

AKIRA HATTORI

In § 1 of this note we first define the trace of an endomorphism of a projective module P over a non-commutative ring A. Then we call the trace of the identity the rank element $r(P)$ of P, which we shall illustrate by several examples. For a projective module P over the groupalgebra of a finite group G, the rank element of P is essentially the character of G in P. In §2 we prove that under certain assumption two projective modules P_{1} and P_{2} over an algebra over a complete local ring 0 are isomorphic if and only if their rank elements are identical. This is a type of proposition asserting that two representations are equivalent if and only if their characters are identical, and in fact, when A is the groupalgebra, the above theorem may be considered as another formulation of Swan's local theorem [9]*).

§ 1. Trace and rank element

1.1. Let A be a ring with an identity, and $[A, A]$ its commutator, i.e. the set of finite sums of elements of the form $a b-b a(a, b \in A)$. We denote the abelian group $A /[A, A]$ by A^{a}, and the natural epimorphism $A \rightarrow A^{a}$ by ε. ε is symmetric: $\varepsilon(a b)=\varepsilon(b a)$.

For a left A-module M, we have the right A-module $\operatorname{Hom}_{A}(M, A)$, called the dual module of M and denoted by M^{*} in this paper. It is easy to check that the pairing $(\xi, x) \rightarrow \varepsilon(\xi(x))\left(\xi \in M^{*}, x \in M\right)$ induces a well-defined homomorphism $M^{*} \otimes_{\Delta} M \rightarrow A^{a}$, which we shall denote by π.

Let P be a finitely generated projective left A-module. This means that the mapping $\theta: P^{*} \otimes{ }_{A} P \rightarrow \operatorname{Hom}_{A}(P, P)$ defined by $\theta(\xi \otimes x)(y)=\xi(y) x(x, y \in P$, $\xi \in P^{*}$) is an isomorphism. Now, we shall define the trace $\operatorname{Tr}_{A}(f)$ (or simply $\operatorname{Tr}(f))$ of an endomorphism $f \in \operatorname{Hom}_{A}(P, P)$ by $\operatorname{Tr}(f)=\pi\left(\theta^{-1}(f)\right)$, which is a

[^0]
[^0]: Received January 25, 1964.
 *) The present work was done in 1960-1961, and briefly announced in [5]. Our main objective was to study Swan's results without use of Grothendieck rings. In the meantime, there appeared the works of Giorgiutti [4], Rim, and Bass [2], which gave the same problem nice answers together with a generalization.

